Suppr超能文献

肌浆网Ca²⁺-ATP酶(SERCA1)的构象转变:一种正常模式研究

Transconformations of the SERCA1 Ca-ATPase: a normal mode study.

作者信息

Reuter Nathalie, Hinsen Konrad, Lacapère Jean-Jacques

机构信息

U410 INSERM. Faculté de médecine Xavier Bichat, Paris Cédex 18, France.

出版信息

Biophys J. 2003 Oct;85(4):2186-97. doi: 10.1016/S0006-3495(03)74644-X.

Abstract

The transport of Ca(2+) by Ca-ATPase across the sarcoplasmic reticulum membrane is accompanied by several transconformations of the protein. Relying on the already established functional importance of low-frequency modes in dynamics of proteins, we report here a normal mode analysis of the Ca(2+)-ATPase based on the crystallographic structures of the E1Ca(2) and E2TG forms. The lowest-frequency modes reveal that the N and A(+Nter) domains undergo the largest amplitude movements. The dynamical domain analysis performed with the DomainFinder program suggests that they behave as rigid bodies, unlike the highly flexible P domain. We highlight two types of movements of the transmembrane helices: i), a concerted movement around an axis perpendicular to the membrane which "twists open" the lumenal side of the protein and ii), an individual translational and rotational mobility which is of lower amplitude for the helices hosting the calcium binding sites. Among all modes calculated for E1Ca, only three are enough to describe the transition to E2TG; the associated movements involve almost exclusively the A and N domains, reflecting the closure of the cytoplasmic headpiece and high displacement of the L7-8 lumenal loop. Subsequently, we discuss the potential contribution of the remaining low-frequency normal modes to the transconformations occurring within the overall calcium transport cycle.

摘要

Ca - ATP酶介导Ca(2+)跨肌浆网膜的转运伴随着该蛋白的几种构象转变。基于蛋白质动力学中低频模式已确立的功能重要性,我们在此报告基于E1Ca(2)和E2TG形式的晶体结构对Ca(2+) - ATP酶进行的正常模式分析。最低频率模式显示N结构域和A(+Nter)结构域的运动幅度最大。使用DomainFinder程序进行的动态结构域分析表明,与高度灵活的P结构域不同,它们表现为刚体。我们突出了跨膜螺旋的两种运动类型:i)围绕垂直于膜的轴的协同运动,该运动使蛋白质的腔侧“扭曲打开”;ii)单个的平移和旋转运动,对于承载钙结合位点的螺旋,其幅度较小。在为E1Ca计算的所有模式中,只有三种足以描述向E2TG的转变;相关运动几乎仅涉及A结构域和N结构域,反映了细胞质头部的关闭以及L7 - 8腔环的高位移。随后,我们讨论了其余低频正常模式对整个钙转运循环中发生的构象转变的潜在贡献。

相似文献

1
Transconformations of the SERCA1 Ca-ATPase: a normal mode study.
Biophys J. 2003 Oct;85(4):2186-97. doi: 10.1016/S0006-3495(03)74644-X.
2
The nature of the low-frequency normal modes of the E1Ca form of the SERCA1 Ca2+-ATPase.
Ann N Y Acad Sci. 2003 Apr;986:344-6. doi: 10.1111/j.1749-6632.2003.tb07210.x.
3
A structural model for the catalytic cycle of Ca(2+)-ATPase.
J Mol Biol. 2002 Feb 8;316(1):201-11. doi: 10.1006/jmbi.2001.5330.
4
Normal mode-based fitting of atomic structure into electron density maps: application to sarcoplasmic reticulum Ca-ATPase.
Biophys J. 2005 Feb;88(2):818-27. doi: 10.1529/biophysj.104.050716. Epub 2004 Nov 12.
5
Structural changes in the calcium pump accompanying the dissociation of calcium.
Nature. 2002 Aug 8;418(6898):605-11. doi: 10.1038/nature00944.
6
A calcium pump made visible.
Curr Opin Struct Biol. 2002 Aug;12(4):547-54. doi: 10.1016/s0959-440x(02)00360-3.
8
Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution.
Nature. 2000 Jun 8;405(6787):647-55. doi: 10.1038/35015017.
9
Structure and function of the calcium pump.
Annu Rev Biophys Biomol Struct. 2003;32:445-68. doi: 10.1146/annurev.biophys.32.110601.142433. Epub 2003 Feb 19.
10
Crystal structures of Ca2+-ATPase in various physiological states.
Ann N Y Acad Sci. 2003 Apr;986:1-8. doi: 10.1111/j.1749-6632.2003.tb07131.x.

引用本文的文献

1
Explicit versus implicit consideration of binding partners in protein-protein complex to elucidate intrinsic dynamics.
Biophys Rev. 2022 Dec 17;14(6):1379-1392. doi: 10.1007/s12551-022-01026-5. eCollection 2022 Dec.
2
Structural and energetic analysis of metastable intermediate states in the E1P-E2P transition of Ca-ATPase.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2105507118. Epub 2021 Sep 30.
3
Deciphering the Mechanism of Inhibition of SERCA1a by Sarcolipin Using Molecular Simulations.
Front Mol Biosci. 2021 Feb 4;7:606254. doi: 10.3389/fmolb.2020.606254. eCollection 2020.
4
Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases.
Comput Struct Biotechnol J. 2020 Mar 3;18:532-547. doi: 10.1016/j.csbj.2020.02.017. eCollection 2020.
5
Terahertz Frequency Spectroscopy to Determine Cold Shock Protein Stability upon Solvation and Evaporation - A Molecular Dynamics Study.
IEEE Trans Terahertz Sci Technol. 2017 Mar;7(2):131-143. doi: 10.1109/TTHZ.2016.2637380. Epub 2017 Jan 9.
6
Normal mode analysis as a method to derive protein dynamics information from the Protein Data Bank.
Biophys Rev. 2017 Dec;9(6):877-893. doi: 10.1007/s12551-017-0330-2. Epub 2017 Nov 4.
7
Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.
PLoS Comput Biol. 2016 Apr 28;12(4):e1004619. doi: 10.1371/journal.pcbi.1004619. eCollection 2016 Apr.
8
Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes.
PLoS Comput Biol. 2016 Mar 25;12(3):e1004834. doi: 10.1371/journal.pcbi.1004834. eCollection 2016 Mar.
9
WEBnm@ v2.0: Web server and services for comparing protein flexibility.
BMC Bioinformatics. 2014 Dec 30;15(1):427. doi: 10.1186/s12859-014-0427-6.
10
Evolution of oligomeric state through allosteric pathways that mimic ligand binding.
Science. 2014 Dec 19;346(6216):1254346. doi: 10.1126/science.1254346.

本文引用的文献

1
The nature of the low-frequency normal modes of the E1Ca form of the SERCA1 Ca2+-ATPase.
Ann N Y Acad Sci. 2003 Apr;986:344-6. doi: 10.1111/j.1749-6632.2003.tb07210.x.
2
Structure and function of the calcium pump.
Annu Rev Biophys Biomol Struct. 2003;32:445-68. doi: 10.1146/annurev.biophys.32.110601.142433. Epub 2003 Feb 19.
3
MolMovDB: analysis and visualization of conformational change and structural flexibility.
Nucleic Acids Res. 2003 Jan 1;31(1):478-82. doi: 10.1093/nar/gkg104.
6
Structural changes in the calcium pump accompanying the dissociation of calcium.
Nature. 2002 Aug 8;418(6898):605-11. doi: 10.1038/nature00944.
7
8
A structural model for the catalytic cycle of Ca(2+)-ATPase.
J Mol Biol. 2002 Feb 8;316(1):201-11. doi: 10.1006/jmbi.2001.5330.
9
Kinetics of the Ca(2+), H(+), and Mg(2+) interaction with the ion-binding sites of the SR Ca-ATPase.
Biophys J. 2002 Jan;82(1 Pt 1):170-81. doi: 10.1016/S0006-3495(02)75384-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验