Suppr超能文献

一种用于大分子的粗粒度正常模式方法:Ca(2+) -ATP酶的高效实现与应用

A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase.

作者信息

Li Guohui, Cui Qiang

机构信息

Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706 USA.

出版信息

Biophys J. 2002 Nov;83(5):2457-74. doi: 10.1016/S0006-3495(02)75257-0.

Abstract

A block normal mode (BNM) algorithm, originally proposed by Tama et al., (Proteins Struct. Func. Genet. 41:1-7, 2000) was implemented into the simulation program CHARMM. The BNM approach projects the hessian matrix into local translation/rotation basis vectors and, therefore, dramatically reduces the size of the matrix involved in diagonalization. In the current work, by constructing the atomic hessian elements required in the projection operation on the fly, the memory requirement for the BNM approach has been significantly reduced from that of standard normal mode analysis and previous implementation of BNM. As a result, low frequency modes, which are of interest in large-scale conformational changes of large proteins or protein-nucleic acid complexes, can be readily obtained. Comparison of the BNM results with standard normal mode analysis for a number of small proteins and nucleic acids indicates that many properties dominated by low frequency motions are well reproduced by BNM; these include atomic fluctuations, the displacement covariance matrix, vibrational entropies, and involvement coefficients for conformational transitions. Preliminary application to a fairly large system, Ca(2+)-ATPase (994 residues), is described as an example. The structural flexibility of the cytoplasmic domains (especially domain N), correlated motions among residues on domain interfaces and displacement patterns for the transmembrane helices observed in the BNM results are discussed in relation to the function of Ca(2+)-ATPase. The current implementation of the BNM approach has paved the way for developing efficient sampling algorithms with molecular dynamics or Monte Carlo for studying long-time scale dynamics of macromolecules.

摘要

一种最初由Tama等人提出的(《蛋白质结构、功能与遗传学》41:1 - 7, 2000)块正规模式(BNM)算法被应用于模拟程序CHARMM中。BNM方法将海森矩阵投影到局部平移/旋转基向量上,因此显著减小了参与对角化的矩阵大小。在当前工作中,通过即时构建投影操作所需的原子海森元素,BNM方法的内存需求相较于标准正规模式分析和BNM的先前实现有了显著降低。结果,对于大型蛋白质或蛋白质 - 核酸复合物的大规模构象变化感兴趣的低频模式能够很容易地获得。将BNM结果与多种小蛋白质和核酸的标准正规模式分析进行比较表明,许多由低频运动主导的性质能被BNM很好地重现;这些性质包括原子波动、位移协方差矩阵、振动熵以及构象转变的参与系数。以对一个相当大的系统——Ca(2 +)-ATP酶(994个残基)的初步应用为例进行了描述。结合Ca(2 +)-ATP酶的功能,讨论了在BNM结果中观察到的细胞质结构域(特别是结构域N)的结构灵活性、结构域界面上残基之间的相关运动以及跨膜螺旋的位移模式。BNM方法的当前实现为开发结合分子动力学或蒙特卡罗方法的高效采样算法以研究大分子的长时间尺度动力学铺平了道路。

相似文献

7
Exploring the natural conformational changes of the C-terminal domain of calmodulin.探索钙调蛋白C末端结构域的自然构象变化。
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 1):031908. doi: 10.1103/PhysRevE.66.031908. Epub 2002 Sep 23.

引用本文的文献

1
Persistent Sheaf Laplacian Analysis of Protein Flexibility.蛋白质柔韧性的持久层拉普拉斯分析
J Phys Chem B. 2025 May 1;129(17):4169-4178. doi: 10.1021/acs.jpcb.5c01287. Epub 2025 Apr 22.
5
Biomolecular Topology: Modelling and Analysis.生物分子拓扑学:建模与分析
Acta Math Sin Engl Ser. 2022;38(10):1901-1938. doi: 10.1007/s10114-022-2326-5. Epub 2022 Oct 15.
10
Predicting Protein Functional Motions: an Old Recipe with a New Twist.预测蛋白质功能运动:旧方新用。
Biophys J. 2020 May 19;118(10):2513-2525. doi: 10.1016/j.bpj.2020.03.020. Epub 2020 Apr 4.

本文引用的文献

1
Implicit solvent models.隐式溶剂模型
Biophys Chem. 1999 Apr 5;78(1-2):1-20. doi: 10.1016/s0301-4622(98)00226-9.
2
Time-dependent quantum methods for large systems.适用于大型系统的含时量子方法。
Annu Rev Phys Chem. 1999;50:167-91. doi: 10.1146/annurev.physchem.50.1.167.
3
Intrinsic flexibility and gating mechanism of the potassium channel KcsA.钾通道KcsA的内在柔韧性与门控机制。
Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1949-53. doi: 10.1073/pnas.042650399. Epub 2002 Feb 12.
4
Flexibility and packing in proteins.蛋白质中的柔韧性与堆积
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1274-9. doi: 10.1073/pnas.032522499. Epub 2002 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验