Mizokami Myra M, Hu Peisheng, Khawli Leslie A, Li Jiali, Epstein Alan L
Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA.
Hybrid Hybridomics. 2003 Aug;22(4):197-207. doi: 10.1089/153685903322328929.
Interferon-gamma (IFN-gamma) has been used in the experimental treatment of cancer with limited success. Despite direct cytotoxic effects on tumor cells and the ability to stimulate the antitumor activities of a variety of effector cells, IFN-gamma has not been found to produce impressive therapeutic responses partly because of inadequate sustained intratumoral concentrations and systemic toxicity. To overcome these obstacles, we have developed an antibody/murine IFN-gamma fusion protein (chTNT-3/muIFN-gamma), which utilizes the tumor necrosis therapy antibody, chTNT-3, to target murine IFN-gamma to necrotic regions of solid tumors implanted in immunocompetent BALB/c mice. The genetically engineered fusion protein was expressed in NS0 cells using the Glutamine Synthetase Gene Amplification Expression System. After purification, the fusion protein demonstrated both antigen targeting and cytokine activities as assessed by in vitro assays which, when compared to recombinant free IFN-gamma, demonstrated approximately 40-45% biologic activity by two separate assay determinations. Pharmacokinetic and biodistribution studies in mice demonstrated a relatively long whole body half-life of 32 h in vivo and significant intratumoral accretion, respectively. Most importantly, immunotherapeutic studies in the MAD109 syngeneic murine carcinoma of the lung demonstrated significant intratumoral infiltration by leukocytes, primarily by macrophages and CD4(-) CD8(-) Thy-1.2(+) lymphocytes. Additionally, intravenous administration of the fusion protein significantly decreased the number of metastatic foci in an experimental model of pulmonary metastasis without causing any observable toxicity. These studies demonstrate that chTNT3/muIFN-gamma can safely target syngeneic tumor models as part of a promising strategy for the targeted immunotherapy of solid tumors.
干扰素-γ(IFN-γ)已用于癌症的实验性治疗,但成效有限。尽管IFN-γ对肿瘤细胞有直接细胞毒性作用,且能够刺激多种效应细胞的抗肿瘤活性,但由于肿瘤内持续浓度不足和全身毒性,尚未发现其能产生令人印象深刻的治疗反应。为克服这些障碍,我们开发了一种抗体/鼠源IFN-γ融合蛋白(chTNT-3/muIFN-γ),它利用肿瘤坏死治疗抗体chTNT-3将鼠源IFN-γ靶向植入具有免疫活性的BALB/c小鼠体内的实体瘤坏死区域。使用谷氨酰胺合成酶基因扩增表达系统在NS0细胞中表达这种基因工程融合蛋白。纯化后,通过体外试验评估,该融合蛋白显示出抗原靶向和细胞因子活性,与重组游离IFN-γ相比,通过两种独立的试验测定显示其生物学活性约为40%-45%。小鼠体内的药代动力学和生物分布研究分别表明,该融合蛋白在体内的全身半衰期相对较长,为32小时,且在肿瘤内有显著蓄积。最重要 的是,在MAD109同基因小鼠肺癌模型中的免疫治疗研究表明,肿瘤内有大量白细胞浸润,主要是巨噬细胞和CD4(-) CD8(-) Thy-1.2(+)淋巴细胞。此外,在肺转移实验模型中,静脉注射该融合蛋白可显著减少转移灶数量,且未引起任何可观察到的毒性。这些研究表明,chTNT3/muIFN-γ作为实体瘤靶向免疫治疗的一种有前景的策略的一部分,可以安全地靶向同基因肿瘤模型。