Firneisz Gábor, Zehavi Idit, Vermes Csaba, Hanyecz Anita, Frieman Joshua A, Glant Tibor T
Section of Biochemistry and Molecular Biology, Departments of Biochemistry, Orthopedic Surgery and Internal Medicine, Rush University at Rush-Presbyterian-St Luke's Medical Center Chicago, IL 60612, USA.
Bioinformatics. 2003 Sep 22;19(14):1781-6. doi: 10.1093/bioinformatics/btg252.
DNA microarray technology and the completion of human and mouse genome sequencing programs are now offering new avenues for the investigation of complex genetic diseases. In particular, this makes possible the study of the spatial distribution of disease-related genes within the genome. We report on the first systematic search for clustering of genes associated with a polygenic autoimmune disease.
Using a set of cDNA microarray chip experiments in two mouse models of rheumatoid arthritis, we have identified approximately 200 genes based on their expression in inflamed joints and mapped them into the genome. We compute the spatial autocorrelation function of the selected genes and find that they tend to cluster over scales of a few megabase pairs. We then identify significant gene clusters using a friends-of-friends algorithm. This approach should aid in discovering functionally related gene clusters in the mammalian genome.
DNA微阵列技术以及人类和小鼠基因组测序计划的完成,为复杂遗传疾病的研究提供了新途径。特别是,这使得研究基因组中与疾病相关基因的空间分布成为可能。我们报告了首次对与多基因自身免疫性疾病相关基因的聚类进行的系统搜索。
通过在两种类风湿性关节炎小鼠模型中进行的一组cDNA微阵列芯片实验,我们根据炎症关节中的表达鉴定了约200个基因,并将它们定位到基因组中。我们计算了所选基因的空间自相关函数,发现它们倾向于在几个兆碱基对的尺度上聚类。然后,我们使用朋友的朋友算法识别出显著的基因簇。这种方法应有助于发现哺乳动物基因组中功能相关的基因簇。