Suppr超能文献

控制微阵列差异表达分析中的假阴性错误:一种PRIM方法。

Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.

作者信息

Cole Steve W, Galic Zoran, Zack Jerome A

机构信息

Department of Medicine, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1678, USA.

出版信息

Bioinformatics. 2003 Sep 22;19(14):1808-16. doi: 10.1093/bioinformatics/btg242.

Abstract

MOTIVATION

Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements.

RESULTS

Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays.

AVAILABILITY

Freestanding JAVA application at http://microarray.crump.ucla.edu/focus

摘要

动机

理论思考表明,当前的微阵列筛选算法可能无法检测到基因表达中的许多真实差异(II型分析错误)。我们通过传统线性统计模型(如t检验)、微阵列适配变体(如SAM、Cyber-T)以及基于留出法交叉验证的新策略,评估了差异表达分析中的“假阴性”错误率。后一种方法采用机器学习算法患者规则归纳法(PRIM),从倍数变化和原始荧光测量的布尔合取中推断基因表达可靠变化的最小阈值。

结果

基于四个经验数据集的蒙特卡罗分析表明,传统统计模型及其微阵列适配变体忽略了超过50%显示显著上调的基因。联合PRIM预测规则能找回大约两倍数量的差异表达转录本,同时对假阳性(I型)错误保持严格控制。结果,实验重复率提高,总分析错误率下降。逆转录-聚合酶链反应研究证实,PRIM检测到但其他方法忽略的基因诱导代表了mRNA水平的真实变化。基于PRIM的联合推理规则因此代表了一种用于DNA微阵列高灵敏度筛选的改进策略。

可用性

独立的JAVA应用程序,网址为http://microarray.crump.ucla.edu/focus

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验