Suppr超能文献

匹配病例对照研究中二元暴露误分类的全似然方法。

Full-likelihood approaches to misclassification of a binary exposure in matched case-control studies.

作者信息

Rice Kenneth

机构信息

MRC Biostatistics Unit, University Forvie Site, Robinson Way, Cambridge CB2 2SR, U.K.

出版信息

Stat Med. 2003 Oct 30;22(20):3177-94. doi: 10.1002/sim.1546.

Abstract

We consider analysis of matched case-control studies where a binary exposure is potentially misclassified, and there may be a variety of matching ratios. The parameter of interest is the ratio of odds of case exposure to control exposure. By extending the conditional model for perfectly classified data via a random effects or Bayesian formulation, we obtain estimates and confidence intervals for the misclassified case which reduce back to standard analytic forms as the error probabilities reduce to zero. Several examples are given, highlighting different analytic phenomena. In a simulation study, using mixed matching ratios, the coverage of the intervals are found to be good, although point estimates are slightly biased on the log scale. Extensions of the basic model are given allowing for uncertainty in the knowledge of misclassification rates, and the inclusion of prior information about the parameter of interest.

摘要

我们考虑对匹配病例对照研究进行分析,其中二元暴露可能存在误分类,并且可能存在多种匹配比。感兴趣的参数是病例暴露与对照暴露的比值比。通过随机效应或贝叶斯公式扩展完全分类数据的条件模型,我们获得了误分类病例的估计值和置信区间,当误差概率降至零时,这些估计值和置信区间会还原为标准分析形式。给出了几个例子,突出了不同的分析现象。在一项模拟研究中,使用混合匹配比,发现区间的覆盖率良好,尽管点估计在对数尺度上略有偏差。给出了基本模型的扩展,考虑了误分类率知识中的不确定性,并纳入了关于感兴趣参数的先验信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验