Suppr超能文献

Influence of autochthonous dissolved organic carbon and nutrient limitation on alachlor biotransformation in aerobic aquatic systems.

作者信息

Ensz Andrew P, Knapp Charles W, Graham David W

机构信息

Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, Kansas 66045, USA.

出版信息

Environ Sci Technol. 2003 Sep 15;37(18):4157-62. doi: 10.1021/es0303790.

Abstract

Much work has suggested that the rate of attenuation of water-soluble organic contaminants in aerobic aquatic systems is dependent on the level of secondary nutrients in the water column. For example, the decay rate of alachlor, a common herbicide, was over 10 times higher under hypereutrophic compared with oligotrophic water conditions. It has been presumed that higher water column nutrient levels produce larger microbial communities, resulting in higher rates of alachlor cometabolism. However, most earlier field studies only assessed alachlor fate in systems with full light exposure (FLE). Therefore, new experiments were performed to assess how variations in light level affect alachlor cometabolism in such systems. Twelve tank mesocosms were maintained using identical nitrogen (N) and phosphorus (P) supply conditions: four units with full light exposure (100% FLE), four with partial shading (19.3% FLE), and four with near complete shading (0.5% FLE). Alachlor half-lives were found to vary broadly, from 50 to 60 days in higher light units to > 180 days in the 0.5% FLE units. Nutrient analysis indicated that the low light units were severely carbon (C)-limited for microbial decomposition, whereas the other units had excess C relative to N and P. Apparently, reduced light levels cause decreased production of bioavailable C for decomposition, which significantly reduces alachlor cometabolism. The data suggest that water column nutrient levels only correlate with the alachlor decay rate when light levels are high, and that the biodegradable carbon supply must be considered when the fate of water-soluble contaminants in aerobic aquatic systems is assessed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验