Suppr超能文献

使用一种新开发的用于体外生命支持血管通路的双球囊、双腔导管进行的初步实验。

Preliminary experiment with a newly developed double balloon, double lumen catheter for extracorporeal life support vascular access.

作者信息

Okamoto Taisuke, Ichinose Keisuke, Tanimoto Hironari, Yoshitake Atsushi, Sakanashi Yuji, Tashiro Masafumi, Terasaki Hidenori

机构信息

Department of Anesthesiology, Kumamoto University School of Medicine, 1-1-1 Honjo, Kumamoto 860-8556, Japan.

出版信息

ASAIO J. 2003 Sep-Oct;49(5):583-8. doi: 10.1097/01.mat.0000084105.01116.9e.

Abstract

Recently, venovenous extracorporeal life support (VVECLS) using a double lumen catheter has been clinically used to avoid neurologic complications in the treatment of respiratory failure for neonates. However, recirculation, which is a limiting factor for oxygen delivery, still exists, and thus it does not contribute to oxygenation of the patient. We developed a newly designed double lumen catheter with a double balloon (DBDL) catheter for ECLS vascular access and performed two animal preliminary experiments in normal and hypoxic dog models (normal ventilation and one lung ventilation experiments) to investigate whether the DBDL catheter could prevent recirculation and maintain oxygen delivery to systemic circulation. The DBDL catheter (JCT Co., Hiroshima, Japan) of 15 Fr was fabricated from silicone. It consists of two lumens for drainage and return of blood with two balloons (distal and proximal balloons) that prevent oxygenated blood mixing with unoxygenated blood. VVECLS using a DBDL catheter was performed in 13 mongrel dogs (8 dogs for normal ventilation experiment weighing 12.9 +/- 1.6 kg [mean +/- SD], 5 dogs for one lung ventilation experiment weighing 16.6 +/- 2.5 kg [mean +/- SD]) under anesthesia in the two experiments. The bypass flow ranged from 10-40 ml/kg per minute in the normal ventilation experiment. VVECLS in the one lung ventilation experiment was performed with maximal bypass flow for 6 hours (ranged from 25.2 +/- 8.0-28.3 +/- 8.7 ml/kg per minute at balloon inflation and deflation). Recirculation and oxygen transfer of artificial lung with or without balloon inflation during VVECLS were studied. Recirculation decreased with balloon inflation at varied bypass flows during VVECLS in the normal ventilation experiment (varied from 1.5 +/- 14.6-12.8 +/- 16.7%) and for 6 hours after VVECLS initiation in the one lung ventilation experiment (varied from 12.2 +/- 12.2-19.2 +/- 6.5%). In particular, the values at 3 and 6 hours were significantly lower than that of balloon deflation in the one lung ventilation experiment. The difference in O2 content between inlet and outlet in the artificial lung with balloon inflation was significantly higher than that of balloon deflation (varied from 3.7 +/- 1.8-4.8 +/- 1.9 ml/dl, p < 0.05) at the bypass flow of 10-30 ml/kg per minute in the normal ventilation experiment and at 5 hours after VVECLS initiation in the one lung ventilation experiment (varied from 10.6 +/- 1.6-11.7 +/- 1.8 ml/dl). The blood gas analysis of systemic circulation with balloon inflation revealed that the values of PaO2 (varied from 83.8 +/- 11.4-96.9 +/- 23.4 mm Hg) and PaCO2 (37.7 +/- 9.2-40.4 +/- 11.8 mm Hg) were higher and lower, respectively, compared with balloon deflation. In particular, PaO2 level was significantly higher than that of the preECLS value at the bypass flow of 20-40 ml/kg per minute (varied from 83.8 +/- 11.4-96.9 +/- 23.4 mm Hg, p < 0.05). In the one lung ventilation experiment, systemic PaO2 and PaCO2 levels at balloon inflation were higher and lower, respectively, compared with balloon deflation during VVECLS for 6 hours. At balloon inflation, the value of PaO2 at 6 hours after VVECLS initiation was significantly higher than that at balloon deflation. A newly designed DBDL catheter for ECLS vascular access successfully reduced recirculation and maintained oxygen delivery to systemic circulation during VVECLS. These results suggest that a high bypass flow may not be necessarily required in terms of oxygen delivery to systemic circulation when the DBDL catheter was used as an ECLS vascular access.

摘要

最近,使用双腔导管的静脉-静脉体外生命支持(VVECLS)已在临床上用于避免新生儿呼吸衰竭治疗中的神经并发症。然而,作为氧输送限制因素的再循环仍然存在,因此它对患者的氧合没有帮助。我们开发了一种新设计的带有双气囊的双腔导管(DBDL)用于体外膜肺氧合(ECLS)血管通路,并在正常和低氧犬模型中进行了两项动物初步实验(正常通气和单肺通气实验),以研究DBDL导管是否可以防止再循环并维持向体循环的氧输送。15F的DBDL导管(日本广岛JCT公司)由硅胶制成。它由两个用于血液引流和回流的腔以及两个防止含氧血液与未含氧血液混合的气囊(远端和近端气囊)组成。在两项实验中,对13只杂种犬进行了使用DBDL导管的VVECLS(8只用于正常通气实验,体重12.9±1.6kg[平均值±标准差],5只用于单肺通气实验,体重16.6±2.5kg[平均值±标准差]),实验在麻醉状态下进行。正常通气实验中旁路血流量为每分钟10 - 40ml/kg。单肺通气实验中的VVECLS以最大旁路血流量进行6小时(气囊充气和放气时范围为每分钟25.2±8.0 - 28.3±8.7ml/kg)。研究了VVECLS期间气囊充气或未充气时人工肺的再循环和氧转移情况。在正常通气实验中,VVECLS期间不同旁路血流量下气囊充气时再循环减少(范围从1.5±14.6 - 12.8±16.7%),在单肺通气实验中VVECLS开始后6小时内再循环也减少(范围从12.2±12.2 - 19.2±6.5%)。特别是,在单肺通气实验中,3小时和6小时的值明显低于气囊放气时的值。在正常通气实验中,旁路血流量为每分钟10 - 30ml/kg时以及单肺通气实验中VVECLS开始后5小时,气囊充气时人工肺进出口的O2含量差异明显高于气囊放气时(范围从3.7±1.8 - 4.8±1.9ml/dl,p<0.05)。气囊充气时体循环的血气分析显示,与气囊放气相比,PaO2值(范围从83.8±11.4 - 96.9±23.4mmHg)更高,而PaCO2值(37.7±9.2 - 40.4±11.8mmHg)更低。特别是,在旁路血流量为每分钟20 - 40ml/kg时,PaO2水平明显高于ECLS前的值(范围从83.8±11.4 - 96.9±23.4mmHg,p<0.05)。在单肺通气实验中,VVECLS进行6小时期间,气囊充气时体循环的PaO2和PaCO2水平分别高于和低于气囊放气时。气囊充气时,VVECLS开始后6小时的PaO2值明显高于气囊放气时。一种新设计的用于ECLS血管通路的DBDL导管在VVECLS期间成功减少了再循环并维持了向体循环的氧输送。这些结果表明,当DBDL导管用作ECLS血管通路时,就向体循环的氧输送而言,不一定需要高旁路血流量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验