Suppr超能文献

基于中空纤维的特异性抗体过滤器中抗体转运的数学与实验分析

Mathematical and experimental analyses of antibody transport in hollow-fiber-based specific antibody filters.

作者信息

Hout Mariah S, Federspiel William J

机构信息

The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15203, USA.

出版信息

Biotechnol Prog. 2003 Sep-Oct;19(5):1553-61. doi: 10.1021/bp025796f.

Abstract

We are developing hollow fiber-based specific antibody filters (SAFs) that selectively remove antibodies of a given specificity directly from whole blood, without separation of the plasma and cellular blood components and with minimal removal of plasma proteins other than the targeted pathogenic antibodies. A principal goal of our research is to identify the primary mechanisms that control antibody transport within the SAF and to use this information to guide the choice of design and operational parameters that maximize the SAF-based antibody removal rate. In this study, we formulated a simple mathematical model of SAF-based antibody removal and performed in vitro antibody removal experiments to test key predictions of the model. Our model revealed three antibody transport regimes, defined by the magnitude of the Damköhler number Da (characteristic antibody-binding rate/characteristic antibody diffusion rate): reaction-limited (Da </= 0.1), intermediate (0.1 < Da < 10), and diffusion-limited (Da >/= 10). For a given SAF geometry, blood flow rate, and antibody diffusivity, the highest antibody removal rate was predicted for diffusion-limited antibody transport. Additionally, for diffusion-limited antibody transport the predicted antibody removal rate was independent of the antibody-binding rate and hence was the same for any antibody-antigen system and for any patient within one antibody-antigen system. Using SAF prototypes containing immobilized bovine serum albumin (BSA), we measured anti-BSA removal rates consistent with transport in the intermediate regime (Da approximately 3). We concluded that initial SAF development work should focus on achieving diffusion-limited antibody transport by maximizing the SAF antibody-binding capacity (hence maximizing the characteristic antibody-binding rate). If diffusion-limited antibody transport is achieved, the antibody removal rate may be raised further by increasing the number and length of the SAF fibers and by increasing the blood flow rate through the SAF.

摘要

我们正在研发基于中空纤维的特异性抗体过滤器(SAF),该过滤器可直接从全血中选择性去除特定特异性的抗体,无需分离血浆和血细胞成分,且除目标致病抗体外,血浆蛋白的去除量极少。我们研究的一个主要目标是确定控制抗体在SAF内运输的主要机制,并利用这些信息指导设计和操作参数的选择,以最大化基于SAF的抗体去除率。在本研究中,我们建立了一个基于SAF的抗体去除的简单数学模型,并进行了体外抗体去除实验,以测试该模型的关键预测。我们的模型揭示了三种抗体运输模式,由达姆科勒数Da(特征性抗体结合速率/特征性抗体扩散速率)的大小定义:反应受限(Da≤0.1)、中间(0.1<Da<10)和扩散受限(Da≥10)。对于给定的SAF几何形状、血流速率和抗体扩散率,预测扩散受限的抗体运输具有最高的抗体去除率。此外,对于扩散受限的抗体运输,预测的抗体去除率与抗体结合速率无关,因此对于任何抗体-抗原系统以及一个抗体-抗原系统内的任何患者都是相同的。使用含有固定化牛血清白蛋白(BSA)的SAF原型,我们测量了与中间模式(Da约为3)下运输一致的抗BSA去除率。我们得出结论,SAF的初步开发工作应集中于通过最大化SAF抗体结合能力(从而最大化特征性抗体结合速率)来实现扩散受限的抗体运输。如果实现了扩散受限的抗体运输,可以通过增加SAF纤维的数量和长度以及增加通过SAF的血流速率来进一步提高抗体去除率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验