Marchetti F M, Smolyarenko I E, Simons B D
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036217. doi: 10.1103/PhysRevE.68.036217. Epub 2003 Sep 26.
We explore the influence of an arbitrary external potential perturbation V on the spectral properties of a weakly disordered conductor. In the framework of a statistical field theory of a nonlinear sigma-model type we find, depending on the range and the profile of the external perturbation, two qualitatively different universal regimes of parametric spectral statistics (i.e., cross correlations between the spectra of Hamiltonians H and H+V). We identify the translational invariance of the correlations in the space of Hamiltonians as the key indicator of universality, and find the connection between the coordinate system in this space which makes the translational invariance manifest, and the physically measurable properties of the system. In particular, in the case of localized perturbations, the latter turn out to be the eigenphases of the scattering matrix for scattering off the perturbing potential V. They also have a purely statistical interpretation in terms of the moments of the level velocity distribution. Finally, on the basis of this analysis, a set of results obtained recently by the authors using random matrix theory methods is shown to be applicable to a much wider class of disordered and chaotic structures.
我们探讨任意外部势扰动V对弱无序导体光谱特性的影响。在非线性西格玛模型类型的统计场论框架下,根据外部扰动的范围和分布,我们发现了两种性质不同的参数光谱统计通用 regime(即哈密顿量H和H + V的光谱之间的交叉相关性)。我们将哈密顿量空间中相关性的平移不变性确定为通用性的关键指标,并找到了使平移不变性显现的该空间中的坐标系与系统可物理测量性质之间的联系。特别是,在局部扰动的情况下,后者结果是散射矩阵对于从扰动势V散射的本征相位。它们在能级速度分布的矩方面也有纯粹的统计解释。最后,基于此分析,作者最近使用随机矩阵理论方法获得的一组结果被证明适用于更广泛的无序和混沌结构类别。