Ida Masato, Taniguchi Nobuyuki
Collaborative Research Center of Frontier Simulation Software for Industrial Science, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036705. doi: 10.1103/PhysRevE.68.036705. Epub 2003 Sep 16.
This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.
本文介绍了在学术和实际工业流动计算中反复观察到的大涡模拟中数值不稳定性起源的一个候选因素。无需借助任何亚格子尺度建模,而是基于关于流速流向分量的一个简单假设,从理论上表明,在槽道流计算中,对不可压缩纳维 - 斯托克斯方程应用高斯滤波会产生一个数值不稳定项,即交叉导数项,它类似于Klimas [《计算物理杂志》68, 202 (1987)] 推导的高斯滤波弗拉索夫方程中出现的一项,也类似于Kobayashi和Shimomura [《物理流体》15, L29 (2003)] 最近从动态混合模型中的张量扩散亚格子尺度项推导出来的一项。当前结果预测,不仅所采用的数值方法和亚格子尺度模型,而且仅应用的滤波过程都可能是这种数值不稳定性的根源。关于湍流能量散射与不稳定项之间关系的一项研究表明,该项的不稳定性不一定代表动能的反向散射,而动能的反向散射被认为是大涡模拟中数值不稳定性的一个可能起源。当前的研究结果提出了一个问题,即一个数值稳定的亚格子尺度模型是否能达到理想的精度。