Xing Xiangjun, Mukhopadhyay Ranjan, Lubensky T C, Radzihovsky Leo
Department of Physics, University of Colorado, Boulder, Colorado 80309, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):021108. doi: 10.1103/PhysRevE.68.021108. Epub 2003 Aug 20.
We study the flat phase of nematic elastomer membranes with rotational symmetry spontaneously broken by an in-plane nematic order. Such a state is characterized by a vanishing elastic modulus for simple shear and soft transverse phonons. At harmonic level, the in-plane orientational (nematic) order is stable to thermal fluctuations that lead to short-range in-plane translational (phonon) correlations. To treat thermal fluctuations and relevant elastic nonlinearities, we introduce two generalizations of two-dimensional membranes in a three-dimensional space to arbitrary D-dimensional membranes embedded in a d-dimensional space and analyze their anomalous elasticities in an expansion about D=4. We find a stable fixed point that controls long-scale properties of nematic elastomer membranes. It is characterized by singular in-plane elastic moduli that vanish as a power law eta(lambda)=4-D of a relevant inverse length scale (e.g., wave vector) and a finite bending rigidity. Our predictions are asymptotically exact near four dimensions.
我们研究了具有旋转对称性的向列弹性体膜的平相,其旋转对称性因面内的向列序而自发破缺。这种状态的特征是简单剪切的弹性模量消失以及软横向声子。在谐波水平上,面内取向(向列)序对于导致短程面内平移(声子)关联的热涨落是稳定的。为了处理热涨落和相关的弹性非线性,我们将三维空间中的二维膜推广到嵌入d维空间的任意D维膜,并在D = 4附近的展开中分析它们的反常弹性。我们发现了一个控制向列弹性体膜长程性质的稳定不动点。它的特征是奇异的面内弹性模量,其作为相关逆长度尺度(例如波矢)的幂律eta(lambda)=4 - D消失,以及有限的弯曲刚度。我们的预测在接近四维时是渐近精确的。