Suppr超能文献

Thermal excitations of warped membranes.

作者信息

Košmrlj Andrej, Nelson David R

机构信息

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Department of Molecular and Cellular Biology and School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022126. doi: 10.1103/PhysRevE.89.022126. Epub 2014 Feb 21.

Abstract

We explore thermal fluctuations of thin planar membranes with a frozen spatially varying background metric and a shear modulus. We focus on a special class of D-dimensional "warped membranes" embedded in a d-dimensional space with d ≥ D + 1 and a preferred height profile characterized by quenched random Gaussian variables {h(α)(q)}, α = D + 1,...,d, in Fourier space with zero mean and a power-law variance h(α)(q(1))h(β)(q(2)) ∼ δ(α,β)δ(q(1),-q(2))q(1)(-d(h)). The case D = 2, d = 3, with d(h) = 4 could be realized by flash-polymerizing lyotropic smectic liquid crystals. For D < max{4,d(h)} the elastic constants are nontrivially renormalized and become scale dependent. Via a self-consistent screening approximation we find that the renormalized bending rigidity increases for small wave vectors q as κ(R) ∼ q(-η(f)), while the in-hyperplane elastic constants decrease according to λ(R),μ(R) ∼ q(+η(u)). The quenched background metric is relevant (irrelevant) for warped membranes characterized by exponent d(h) > 4-η(f)((F)) (d(h) < 4-η(f)((F))), where η(f)((F)) is the scaling exponent for tethered surfaces with a flat background metric, and the scaling exponents are related through η(u) + η(f) = d(h) -D (η(u) + 2η(f) = 4-D).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验