Meletiadis Joseph, te Dorsthorst Debbie T A, Verweij Paul E
Department of Medical Microbiology, University Medical Center Nijmegen, Nijmegen, The Netherlands.
J Clin Microbiol. 2003 Oct;41(10):4718-25. doi: 10.1128/JCM.41.10.4718-4725.2003.
A previously described microbroth kinetic system (J. Meletiadis, J. F. Meis, J. W. Mouton, and P. E. Verweij, J. Clin. Microbiol. 39:478-484, 2001) based on continuous monitoring of changes in the optical density of fungal growth was used to describe turbidimetric growth curves of different filamentous fungi in the presence of increasing concentrations of antifungal drugs. Therefore, 24 clinical mold isolates, including Rhizopus oryzae, Aspergillus fumigatus, Aspergillus flavus, and Scedosporium prolificans, were tested against itraconazole, terbinafine, and amphotericin B according to NCCLS guidelines. Among various parameters of the growth curves, the duration of the lag phase was strongly affected by the presence of antifungal drugs. Exposure to increasing drug concentrations resulted in prolonged lag phases of the turbidimetric growth curves. The lag phases of the growth curves at drug concentrations which resulted in more than 50% growth (for itraconazole and terbinafine) and more than 75% growth (for amphotericin B) after 24 h of incubation for R. oryzae, 48 h for Aspergillus spp., and 72 h for S. prolificans were 4 h longer than the lag phases of the growth curves at the corresponding drug-free growth controls which varied from 4.4 h for R. oryzae, 6.5 h for A. flavus, 7.9 h for A. fumigatus, and 11.6 h for S. prolificans. The duration of the lag phases showed small experimental and interstrain variability, with differences of less than 2 h in most of the cases. Using this system, itraconazole and terbinafine resistance (presence of >50% growth) as well as amphotericin B resistance (presence of >75% growth) was determined within incubation periods of 5.0 to 7.7 h for R. oryzae (for amphotericin B resistance incubation for up to 12 h was required), 8.8 to 11.4 h for A. fumigatus, 6.7 to 8.5 h for A. flavus, and 13 to 15.6 h for S. prolificans while awaiting formal MIC determination by the NCCLS reference method.
一种先前描述的微量肉汤动力学系统(J. Meletiadis、J. F. Meis、J. W. Mouton和P. E. Verweij,《临床微生物学杂志》39:478 - 484,2001年)基于对真菌生长光密度变化的连续监测,用于描述在抗真菌药物浓度增加的情况下不同丝状真菌的比浊生长曲线。因此,根据美国国家临床实验室标准化委员会(NCCLS)指南,对24株临床霉菌分离株进行了测试,这些分离株包括米根霉、烟曲霉、黄曲霉和多育赛多孢,测试药物为伊曲康唑、特比萘芬和两性霉素B。在生长曲线的各种参数中,滞后阶段的持续时间受到抗真菌药物的强烈影响。暴露于不断增加的药物浓度会导致比浊生长曲线的滞后阶段延长。对于米根霉,在孵育24小时后,导致生长超过50%(对于伊曲康唑和特比萘芬)和超过75%(对于两性霉素B)的药物浓度下生长曲线的滞后阶段,比相应无药物生长对照的生长曲线滞后阶段长4小时,米根霉无药物生长对照的滞后阶段为4.4小时,黄曲霉为6.5小时,烟曲霉为7.9小时,多育赛多孢为11.6小时。滞后阶段的持续时间在实验和菌株间的变异性较小,大多数情况下差异小于2小时。使用该系统,在米根霉的5.0至7.7小时孵育期内(对于两性霉素B耐药性孵育需要长达12小时)、烟曲霉的8.8至11.4小时、黄曲霉的6.7至8.5小时以及多育赛多孢的13至15.6小时内,可确定伊曲康唑和特比萘芬耐药性(生长>50%)以及两性霉素B耐药性(生长>75%),同时等待NCCLS参考方法进行正式的最低抑菌浓度(MIC)测定。