Boulikas Teni, Vougiouka Maria
Regulon, Inc, Mountain View, CA 94043, USA.
Oncol Rep. 2003 Nov-Dec;10(6):1663-82.
Over twenty years of intensive work toward improvement of cisplatin, and with hundreds of platinum drugs tested, has resulted in the introduction of the widely used carboplatin and of oxaliplatin used only for a very narrow spectrum of cancers. A number of interesting platinum compounds including the orally administered platinum drug JM216, nedaplatin, the sterically hindered platinum(II) complex ZD0473, the trinuclear platinum complex BBR3464, and the liposomal forms Lipoplatin and SPI-77 are under clinical evaluation. This review summarizes the molecular mechanisms of platinum compounds for DNA damage, DNA repair and induction of apoptosis via activation or modulation of signaling pathways and explores the basis of platinum resistance. Cisplatin, carboplatin, oxaliplatin and most other platinum compounds induce damage to tumors via induction of apoptosis; this is mediated by activation of signal transduction leading to the death receptor mechanisms as well as mitochondrial pathways. Apoptosis is responsible for the characteristic nephrotoxicity, ototoxicity and most other toxicities of the drugs. The major limitation in the clinical applications of cisplatin has been the development of cisplatin resistance by tumors. Mechanisms explaining cisplatin resistance include the reduction in cisplatin accumulation inside cancer cells because of barriers across the cell membrane, the faster repair of cisplatin adducts, the modulation of apoptotic pathways in various cells, the upregulation in transcription factors, the loss of p53 and other protein functions and a higher concentration of glutathione and metallothioneins in some type of tumors. A number of experimental strategies to overcome cisplatin resistance are at the preclinical or clinical level such as introduction of the bax gene, inhibition of the JNK pathway, introduction of a functional p53 gene, treatment of tumors with aldose reductase inhibitors and others. Particularly important are combinations of platinum drug treatments with other drugs, radiation and the emerging gene therapy regimens.
二十多年来致力于改进顺铂的深入研究,以及对数百种铂类药物的测试,已促成了广泛使用的卡铂的问世,以及仅用于非常窄谱癌症的奥沙利铂的出现。一些有趣的铂化合物,包括口服铂类药物JM216、奈达铂、空间位阻铂(II)配合物ZD0473、三核铂配合物BBR3464,以及脂质体形式的乐铂和SPI-77正在进行临床评估。本综述总结了铂化合物导致DNA损伤、DNA修复以及通过激活或调节信号通路诱导细胞凋亡的分子机制,并探讨了铂耐药性的基础。顺铂、卡铂、奥沙利铂和大多数其他铂化合物通过诱导细胞凋亡来损伤肿瘤;这是由导致死亡受体机制以及线粒体途径的信号转导激活介导的。细胞凋亡是这些药物典型的肾毒性、耳毒性和大多数其他毒性的原因。顺铂临床应用中的主要限制是肿瘤对顺铂产生耐药性。解释顺铂耐药性的机制包括由于细胞膜屏障导致癌细胞内顺铂积累减少、顺铂加合物修复更快、各种细胞中凋亡途径的调节、转录因子上调、p53和其他蛋白质功能丧失以及某些类型肿瘤中谷胱甘肽和金属硫蛋白浓度较高。一些克服顺铂耐药性的实验策略正处于临床前或临床阶段,例如引入bax基因、抑制JNK途径、引入功能性p53基因、用醛糖还原酶抑制剂治疗肿瘤等。特别重要的是铂类药物治疗与其他药物、放疗以及新兴基因治疗方案的联合应用。