Voss A, Kurths J, Fiehring H
Max-Delbrück-Centrum für Molekulare Medizin, Herz-Kreislauf-Klinik, Berlin, Germany.
Med Biol Eng Comput. 1992 May;30(3):277-82. doi: 10.1007/BF02446965.
Recognition of patients with high risk for ventricular tachycardia (VT) or sudden cardiac death is of high clinical importance. We have investigated the efficiency of maximum entropy spectral estimation (MES) to detect such risk patients on the basis of highly amplified surface ECG. In comparison with the traditionally applied periodogram (fast Fourier transform), the MES produces sharper and more pronounced peaks in the power density spectrum (PS). The main problem is the influence of residual noise (after averaging), which often leads to additional components in the PS. To completely avoid this negative noise influence we developed a new algorithm, called the variance subtraction method. In a first clinical investigation 86 per cent of patients with myocardial infarction and ventricular tachycardia have shown frequency components above 80 Hz in the PS compared with healthy persons where no frequency components above this 80 Hz level could be detected.
识别有室性心动过速(VT)或心源性猝死高风险的患者具有很高的临床重要性。我们研究了基于高度放大的体表心电图,使用最大熵谱估计(MES)来检测此类高风险患者的有效性。与传统应用的周期图(快速傅里叶变换)相比,MES在功率密度谱(PS)中产生更尖锐、更明显的峰值。主要问题是残余噪声(平均后)的影响,这常常导致PS中出现额外的成分。为了完全避免这种负面的噪声影响,我们开发了一种新算法,称为方差减法方法。在首次临床研究中,与未检测到高于80Hz频率成分的健康人相比,86%的心肌梗死和室性心动过速患者在PS中显示出高于80Hz的频率成分。