Suppr超能文献

基于机器学习的药物设计:运用归纳逻辑编程对与二氢叶酸还原酶结合的甲氧苄啶类似物的构效关系进行建模。

Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase.

作者信息

King R D, Muggleton S, Lewis R A, Sternberg M J

机构信息

Department of Statistics, Strathclyde University, Glasgow, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11322-6. doi: 10.1073/pnas.89.23.11322.

Abstract

The machine learning program GOLEM from the field of inductive logic programming was applied to the drug design problem of modeling structure-activity relationships. The training data for the program were 44 trimethoprim analogues and their observed inhibition of Escherichia coli dihydrofolate reductase. A further 11 compounds were used as unseen test data. GOLEM obtained rules that were statistically more accurate on the training data and also better on the test data than a Hansch linear regression model. Importantly machine learning yields understandable rules that characterized the chemistry of favored inhibitors in terms of polarity, flexibility, and hydrogen-bonding character. These rules agree with the stereochemistry of the interaction observed crystallographically.

摘要

来自归纳逻辑编程领域的机器学习程序GOLEM被应用于药物设计中对构效关系进行建模的问题。该程序的训练数据是44种甲氧苄啶类似物及其对大肠杆菌二氢叶酸还原酶的观察抑制作用。另外11种化合物用作未见过的测试数据。与Hansch线性回归模型相比,GOLEM获得的规则在训练数据上统计上更准确,在测试数据上也更好。重要的是,机器学习产生了易于理解的规则,这些规则根据极性、柔韧性和氢键特征描述了有利抑制剂的化学性质。这些规则与晶体学观察到的相互作用的立体化学一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0db/50542/2df072f43e14/pnas01097-0227-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验