Lee Ethan, Salic Adrian, Krüger Roland, Heinrich Reinhart, Kirschner Marc W
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
PLoS Biol. 2003 Oct;1(1):E10. doi: 10.1371/journal.pbio.0000010. Epub 2003 Oct 13.
Wnt signaling plays an important role in both oncogenesis and development. Activation of the Wnt pathway results in stabilization of the transcriptional coactivator beta-catenin. Recent studies have demonstrated that axin, which coordinates beta-catenin degradation, is itself degraded. Although the key molecules required for transducing a Wnt signal have been identified, a quantitative understanding of this pathway has been lacking. We have developed a mathematical model for the canonical Wnt pathway that describes the interactions among the core components: Wnt, Frizzled, Dishevelled, GSK3beta, APC, axin, beta-catenin, and TCF. Using a system of differential equations, the model incorporates the kinetics of protein-protein interactions, protein synthesis/degradation, and phosphorylation/dephosphorylation. We initially defined a reference state of kinetic, thermodynamic, and flux data from experiments using Xenopus extracts. Predictions based on the analysis of the reference state were used iteratively to develop a more refined model from which we analyzed the effects of prolonged and transient Wnt stimulation on beta-catenin and axin turnover. We predict several unusual features of the Wnt pathway, some of which we tested experimentally. An insight from our model, which we confirmed experimentally, is that the two scaffold proteins axin and APC promote the formation of degradation complexes in very different ways. We can also explain the importance of axin degradation in amplifying and sharpening the Wnt signal, and we show that the dependence of axin degradation on APC is an essential part of an unappreciated regulatory loop that prevents the accumulation of beta-catenin at decreased APC concentrations. By applying control analysis to our mathematical model, we demonstrate the modular design, sensitivity, and robustness of the Wnt pathway and derive an explicit expression for tumor suppression and oncogenicity.
Wnt信号传导在肿瘤发生和发育过程中均发挥着重要作用。Wnt信号通路的激活会导致转录共激活因子β-连环蛋白的稳定。近期研究表明,协调β-连环蛋白降解的轴抑制蛋白(axin)自身会发生降解。尽管转导Wnt信号所需的关键分子已被确定,但对该信号通路的定量理解仍显不足。我们构建了一个关于经典Wnt信号通路的数学模型,该模型描述了核心组分之间的相互作用:Wnt、卷曲蛋白(Frizzled)、散乱蛋白(Dishevelled)、糖原合成酶激酶3β(GSK3β)、腺瘤性息肉病蛋白(APC)、轴抑制蛋白、β-连环蛋白以及转录因子TCF。通过一个微分方程组,该模型纳入了蛋白质-蛋白质相互作用、蛋白质合成/降解以及磷酸化/去磷酸化的动力学过程。我们最初利用非洲爪蟾提取物实验定义了动力学、热力学和通量数据的参考状态。基于参考状态分析的预测结果被反复用于构建一个更精细的模型,由此我们分析了Wnt信号的长期和短暂刺激对β-连环蛋白和轴抑制蛋白周转的影响。我们预测了Wnt信号通路的几个不同寻常的特征,其中一些我们已通过实验进行了验证。我们通过实验证实了从模型中获得的一个见解,即两种支架蛋白轴抑制蛋白和APC以非常不同的方式促进降解复合物的形成。我们还能够解释轴抑制蛋白降解在放大和锐化Wnt信号中的重要性,并且我们表明轴抑制蛋白降解对APC的依赖性是一个未被重视的调节回路的重要组成部分,该调节回路可防止在APC浓度降低时β-连环蛋白的积累。通过将控制分析应用于我们的数学模型,我们证明了Wnt信号通路的模块化设计、敏感性和稳健性,并推导出了肿瘤抑制和致癌性的明确表达式。