Ganopolski Andrey
Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam 14412, Germany.
Philos Trans A Math Phys Eng Sci. 2003 Sep 15;361(1810):1871-83; discussion 1883-4. doi: 10.1098/rsta.2003.1246.
Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes.
大气、海洋、冰冻圈、岩石圈和生物圈。本文回顾了采用这种综合方法对冰河时代气候变化进行建模的尝试。特别是,基于中等复杂程度的地球系统模型CLIMBER - 2的模拟结果,比较了不同因素在塑造冰川气候中的作用。结果表明,冰盖、大气成分变化、植被覆盖以及海洋热盐环流的重组在冰川气候变化中发挥着重要作用。这种方法的另一个例子是对两种主要类型的冰川气候突变的建模:丹斯加德 - 奥eschger事件和海因里希事件。我们的结果证实了一些早期提出的机制,这些机制将气候突变与海洋热盐环流和冰盖的内部不稳定性联系起来。同时,研究表明,古气候背景时间演化的真实再现对于模拟观测到的冰川气候突变特征至关重要。