Long X, Müller F, Avruch J
Diabetes Research Laboratory, Department of Molecular Biology, Land Medicine Massachusetts General Hospital, Boston, MA 02114, USA.
Curr Top Microbiol Immunol. 2004;279:115-38. doi: 10.1007/978-3-642-18930-2_8.
The p70 S6 kinase (p70 S6K) was the first signaling element in mammalian cells shown to be inhibited by rapamycin. The activity of the p70 S6K in mammalian cell is upregulated by extracellular amino acids (especially leucine) and by signals from receptor tyrosine kinases (RTKs), primarily through activation of the type 1A PI-3 kinase. The amino acid-/rapamycin-sensitive input and the PI-3 kinase input are co-dominant but largely independent, in that deletion of the amino-terminal and carboxy-terminal noncatalytic sequences flanking the p70 S6K catalytic domain renders the kinase insensitive to inhibition by both rapamycin and by withdrawal of amino acids, whereas this p70 S6K mutant remains responsive to activation by RTKs and to inhibition by wortmannin. At a molecular level, this dual control of p70 S6K activity is attributable to phosphorylation of the two p70 S6K sites: The Ptd Ins 3,4,5P3-dependent kinasel (PDK1) phosphorylates p70 S6K at a Thr on the activation loop, whereas mTOR phosphorylates a Thr located in a hydrophobic motif carboxyterminal to the catalytic domain. Together these two phosphorylations engender a strong, positively cooperative activation of p70 S6K, so that each is indispensable for physiologic regulation. Like RTKs, the p70 S6K appears early in metazoan evolution and comes to represent an important site at which the more ancient, nutrient-responsive TOR pathway converges with the RTK/PI-3 kinase pathway in the control of cell growth. Dual regulation of p70 S6K is seen in Drosophila; however, this convergence is not yet evident in Caenorhabditis elegans, wherein nutrient activation of the insulin receptor (InsR) pathway negatively regulates dauer development and longevity, whereas the TOR pathway regulates overall mRNA translation through effectors distinct from p70 S6K, as in yeast. The C. elegans TOR and InsR pathways show none of the cross- or convergent regulation seen in mammalian cells. The nature of the elements that couple nutrient sufficiency to TOR activity remain to be discovered, and the mechanisms by which RTKs influence TOR activity in mammalian cells require further study. One pathway for RTK control involves the tuberous sclerosis complex, which is absent in C. elegans, but of major importance in Drosophila and higher metazoans.
p70 S6激酶(p70 S6K)是哺乳动物细胞中首个被证明受雷帕霉素抑制的信号元件。哺乳动物细胞中p70 S6K的活性主要通过1A型磷脂酰肌醇-3激酶(PI-3激酶)的激活,由细胞外氨基酸(尤其是亮氨酸)和受体酪氨酸激酶(RTK)发出的信号上调。氨基酸/雷帕霉素敏感输入和PI-3激酶输入共同起主导作用,但在很大程度上相互独立,因为删除p70 S6K催化结构域两侧的氨基末端和羧基末端非催化序列会使该激酶对雷帕霉素和氨基酸撤除的抑制均不敏感,而这种p70 S6K突变体对RTK的激活和渥曼青霉素的抑制仍有反应。在分子水平上,p70 S6K活性的这种双重控制归因于p70 S6K两个位点的磷酸化:磷脂酰肌醇-3,4,5-三磷酸依赖性激酶1(PDK1)在激活环上的一个苏氨酸处使p70 S6K磷酸化,而哺乳动物雷帕霉素靶蛋白(mTOR)在催化结构域羧基末端的一个疏水基序中的苏氨酸处使p70 S6K磷酸化。这两种磷酸化共同引发p70 S6K的强烈、正协同激活,因此二者对于生理调节均不可或缺。与RTK一样,p70 S6K在后生动物进化早期出现,并成为一个重要位点,在细胞生长控制中,更为古老的营养反应性TOR途径与RTK/PI-3激酶途径在此汇聚。在果蝇中可见p70 S6K的双重调节;然而,在秀丽隐杆线虫中这种汇聚尚不明显,在秀丽隐杆线虫中,胰岛素受体(InsR)途径的营养激活负向调节 dauer 发育和寿命,而TOR途径通过与酵母中不同的效应器调节整体mRNA翻译。秀丽隐杆线虫的TOR和InsR途径未显示出哺乳动物细胞中所见的交叉或汇聚调节。将营养充足与TOR活性联系起来的元件的性质仍有待发现,RTK在哺乳动物细胞中影响TOR活性的机制需要进一步研究。RTK控制的一条途径涉及结节性硬化复合体,该复合体在秀丽隐杆线虫中不存在,但在果蝇和高等后生动物中至关重要。