Suppr超能文献

跳跃步态中的正向力反馈?

Positive force feedback in bouncing gaits?

作者信息

Geyer Hartmut, Seyfarth Andre, Blickhan Reinhard

机构信息

Biomechanics Laboratory, Friedrich-Schiller University Jena, Seidelstrasse 20, 07749 Jena, Germany.

出版信息

Proc Biol Sci. 2003 Oct 22;270(1529):2173-83. doi: 10.1098/rspb.2003.2454.

Abstract

During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9-27 kN m(-1)). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.

摘要

在弹跳步态(跑步、跳跃、小跑)中,被动柔顺结构(如肌腱、韧带)储存并释放部分步幅能量。在此过程中,主动肌必须提供所需的力,以承受不断增加的肌腱应变,并补偿不可避免的能量损失。这需要对肌肉激活进行适当的控制。在本研究中,针对跳跃运动,利用具有一块伸肌的双节段腿部模型,研究了来自肌肉感受器(肌梭、高尔基腱器官)的传入信息的潜在作用。研究发现:(i)肌纤维长度和肌肉力的正反馈可导致周期性弹跳;(ii)正力反馈(F+)在较大步幅能量范围内(最大跳跃高度为16.3厘米,几乎是长度反馈的两倍)稳定弹跳模式;(iii)当采用这种反射机制时,对于中等跳跃高度(最高8.8厘米),预测会出现整体弹性腿部行为(跳跃频率为1.4 - 3赫兹,腿部刚度为9 - 27千牛·米⁻¹)。此外,F+可稳定跑步。研究表明,在弹跳任务的支撑阶段,基于反馈的反射性运动控制可能是一种替代中枢运动指令的高效且可靠的方式。

相似文献

1
Positive force feedback in bouncing gaits?
Proc Biol Sci. 2003 Oct 22;270(1529):2173-83. doi: 10.1098/rspb.2003.2454.
3
Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
J Exp Biol. 2014 Sep 1;217(Pt 17):3159-68. doi: 10.1242/jeb.100826. Epub 2014 Jun 19.
5
7
Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits.
J Appl Physiol (1985). 1991 Dec;71(6):2127-32. doi: 10.1152/jappl.1991.71.6.2127.
8
Muscle fascicle and tendon behavior during human locomotion revisited.
Exerc Sport Sci Rev. 2008 Oct;36(4):193-9. doi: 10.1097/JES.0b013e3181878417.
10
The energetic benefits of tendon springs in running: is the reduction of muscle work important?
J Exp Biol. 2014 Dec 15;217(Pt 24):4365-71. doi: 10.1242/jeb.112813. Epub 2014 Nov 13.

引用本文的文献

1
2
Biomechanical models in the lower-limb exoskeletons development: a review.
J Neuroeng Rehabil. 2025 Jan 24;22(1):12. doi: 10.1186/s12984-025-01556-5.
5
Neuromechanical force-based control of a powered prosthetic foot.
Wearable Technol. 2020 Oct 23;1:e6. doi: 10.1017/wtc.2020.6. eCollection 2020.
6
Design of Low-Cost Modular Bio-Inspired Electric-Pneumatic Actuator (EPA)-Driven Legged Robots.
Biomimetics (Basel). 2024 Mar 7;9(3):164. doi: 10.3390/biomimetics9030164.
7
Role of compliant mechanics and motor control in hopping - from human to robot.
Sci Rep. 2024 Mar 21;14(1):6820. doi: 10.1038/s41598-024-57149-0.
8
Enhancing postural stability in a musculoskeletal hopping robot through stretch reflex application on biarticular thigh muscles.
Front Robot AI. 2023 Nov 23;10:1293365. doi: 10.3389/frobt.2023.1293365. eCollection 2023.
10
Muscle preflex response to perturbations in locomotion: experiments and simulations with realistic boundary conditions.
Front Bioeng Biotechnol. 2023 Apr 27;11:1150170. doi: 10.3389/fbioe.2023.1150170. eCollection 2023.

本文引用的文献

1
MECHANICAL WORK IN RUNNING.
J Appl Physiol. 1964 Mar;19:249-56. doi: 10.1152/jappl.1964.19.2.249.
2
A movement criterion for running.
J Biomech. 2002 May;35(5):649-55. doi: 10.1016/s0021-9290(01)00245-7.
3
Effects of changes in hip joint angle on H-reflex excitability in humans.
Exp Brain Res. 2002 Mar;143(2):149-59. doi: 10.1007/s00221-001-0978-4. Epub 2002 Jan 16.
4
Energetics and mechanics of human running on surfaces of different stiffnesses.
J Appl Physiol (1985). 2002 Feb;92(2):469-78. doi: 10.1152/japplphysiol.01164.2000.
5
Patterns of muscle activation in human hopping.
Eur J Appl Physiol. 2001 Jun;84(6):503-9. doi: 10.1007/s004210100414.
6
Soleus H-reflex gain in humans walking and running under simulated reduced gravity.
J Physiol. 2001 Jan 1;530(Pt 1):167-80. doi: 10.1111/j.1469-7793.2001.0167m.x.
7
Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man.
J Physiol. 2000 Mar 15;523 Pt 3(Pt 3):817-27. doi: 10.1111/j.1469-7793.2000.00817.x.
8
What functions do reflexes serve during human locomotion?
Prog Neurobiol. 1999 Jun;58(2):185-205. doi: 10.1016/s0301-0082(98)00081-1.
9
Leg stiffness primarily depends on ankle stiffness during human hopping.
J Biomech. 1999 Mar;32(3):267-73. doi: 10.1016/s0021-9290(98)00170-5.
10
Muscle-tendon stresses and elastic energy storage during locomotion in the horse.
Comp Biochem Physiol B Biochem Mol Biol. 1998 May;120(1):73-87. doi: 10.1016/s0305-0491(98)00024-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验