Firouzi Vahid, Seyfarth Andre, Song Seungmoon, von Stryk Oskar, Ahmad Sharbafi Maziar
Department of Computer Science, TU Darmstadt, Darmstadt , Germany.
Institute of Sport Science, TU Darmstadt, Darmstadt , Germany.
J Neuroeng Rehabil. 2025 Jan 24;22(1):12. doi: 10.1186/s12984-025-01556-5.
Lower limb exoskeletons serve multiple purposes, like supporting and augmenting movement. Biomechanical models are practical tools to understand human movement, and motor control. This paper provides an overview of these models and a comprehensive review of the current applications of them in assistive device development. It also critically analyzes the existing literature to identify research gaps and suggest future directions. Biomechanical models can be broadly classified as conceptual and detailed models and can be used for the design, control, and assessment of exoskeletons. Also, these models can estimate unmeasurable or hard-to-measure variables, which is also useful within the aforementioned applications. We identified the validation of simulation studies and the enhancement of the accuracy and fidelity of biomechanical models as key future research areas for advancing the development of assistive devices. Additionally, we suggest using exoskeletons as a tool to validate and refine these models. We also emphasize the exploration of model-based design and control approaches for exoskeletons targeting pathological gait, and utilizing biomechanical models for diverse design objectives of exoskeletons. In addition, increasing the availability of open source resources accelerates the advancement of the exoskeleton and biomechanical models. Although biomechanical models are widely applied to improve movement assistance and rehabilitation, their full potential in developing human-compatible exoskeletons remains underexplored and requires further investigation. This review aims to reveal existing needs and cranks new perspectives for developing more effective exoskeletons based on biomechanical models.
下肢外骨骼有多种用途,比如支撑和增强运动。生物力学模型是理解人体运动和运动控制的实用工具。本文概述了这些模型,并全面回顾了它们在辅助设备开发中的当前应用。它还对现有文献进行了批判性分析,以确定研究差距并提出未来方向。生物力学模型可大致分为概念模型和详细模型,可用于外骨骼的设计、控制和评估。此外,这些模型可以估计不可测量或难以测量的变量,这在上述应用中也很有用。我们确定模拟研究的验证以及生物力学模型准确性和逼真度的提高是推进辅助设备开发的关键未来研究领域。此外,我们建议使用外骨骼作为验证和完善这些模型的工具。我们还强调探索针对病理性步态的外骨骼基于模型的设计和控制方法,并将生物力学模型用于外骨骼的各种设计目标。此外,增加开源资源的可用性会加速外骨骼和生物力学模型的发展。尽管生物力学模型被广泛应用于改善运动辅助和康复,但它们在开发与人体兼容的外骨骼方面的全部潜力仍未得到充分探索,需要进一步研究。这篇综述旨在揭示现有需求,并为基于生物力学模型开发更有效的外骨骼开辟新的视角。
J Neuroeng Rehabil. 2025-1-24
J Neuroeng Rehabil. 2019-6-3
IISE Trans Occup Ergon Hum Factors. 2021
J Neuroeng Rehabil. 2021-2-1
Disabil Rehabil Assist Technol. 2019-7
Sensors (Basel). 2022-11-23
Wearable Technol. 2025-7-10
Bioengineering (Basel). 2025-5-30
Sports (Basel). 2025-4-24
Wearable Technol. 2021-11-24
J Neuroeng Rehabil. 2023-6-27
IEEE Trans Biomed Eng. 2023-6
IEEE Trans Neural Syst Rehabil Eng. 2023
Front Bioeng Biotechnol. 2023-1-10
Med Biol Eng Comput. 2023-5