文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

下肢外骨骼发展中的生物力学模型:综述

Biomechanical models in the lower-limb exoskeletons development: a review.

作者信息

Firouzi Vahid, Seyfarth Andre, Song Seungmoon, von Stryk Oskar, Ahmad Sharbafi Maziar

机构信息

Department of Computer Science, TU Darmstadt, Darmstadt , Germany.

Institute of Sport Science, TU Darmstadt, Darmstadt , Germany.

出版信息

J Neuroeng Rehabil. 2025 Jan 24;22(1):12. doi: 10.1186/s12984-025-01556-5.


DOI:10.1186/s12984-025-01556-5
PMID:39856714
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11761726/
Abstract

Lower limb exoskeletons serve multiple purposes, like supporting and augmenting movement. Biomechanical models are practical tools to understand human movement, and motor control. This paper provides an overview of these models and a comprehensive review of the current applications of them in assistive device development. It also critically analyzes the existing literature to identify research gaps and suggest future directions. Biomechanical models can be broadly classified as conceptual and detailed models and can be used for the design, control, and assessment of exoskeletons. Also, these models can estimate unmeasurable or hard-to-measure variables, which is also useful within the aforementioned applications. We identified the validation of simulation studies and the enhancement of the accuracy and fidelity of biomechanical models as key future research areas for advancing the development of assistive devices. Additionally, we suggest using exoskeletons as a tool to validate and refine these models. We also emphasize the exploration of model-based design and control approaches for exoskeletons targeting pathological gait, and utilizing biomechanical models for diverse design objectives of exoskeletons. In addition, increasing the availability of open source resources accelerates the advancement of the exoskeleton and biomechanical models. Although biomechanical models are widely applied to improve movement assistance and rehabilitation, their full potential in developing human-compatible exoskeletons remains underexplored and requires further investigation. This review aims to reveal existing needs and cranks new perspectives for developing more effective exoskeletons based on biomechanical models.

摘要

下肢外骨骼有多种用途,比如支撑和增强运动。生物力学模型是理解人体运动和运动控制的实用工具。本文概述了这些模型,并全面回顾了它们在辅助设备开发中的当前应用。它还对现有文献进行了批判性分析,以确定研究差距并提出未来方向。生物力学模型可大致分为概念模型和详细模型,可用于外骨骼的设计、控制和评估。此外,这些模型可以估计不可测量或难以测量的变量,这在上述应用中也很有用。我们确定模拟研究的验证以及生物力学模型准确性和逼真度的提高是推进辅助设备开发的关键未来研究领域。此外,我们建议使用外骨骼作为验证和完善这些模型的工具。我们还强调探索针对病理性步态的外骨骼基于模型的设计和控制方法,并将生物力学模型用于外骨骼的各种设计目标。此外,增加开源资源的可用性会加速外骨骼和生物力学模型的发展。尽管生物力学模型被广泛应用于改善运动辅助和康复,但它们在开发与人体兼容的外骨骼方面的全部潜力仍未得到充分探索,需要进一步研究。这篇综述旨在揭示现有需求,并为基于生物力学模型开发更有效的外骨骼开辟新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/39923c97c239/12984_2025_1556_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/7b5ea7e42975/12984_2025_1556_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/5385da693c74/12984_2025_1556_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/1baca633455a/12984_2025_1556_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/962d072666ac/12984_2025_1556_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/943bc37afad6/12984_2025_1556_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/97760e33135b/12984_2025_1556_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/39923c97c239/12984_2025_1556_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/7b5ea7e42975/12984_2025_1556_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/5385da693c74/12984_2025_1556_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/1baca633455a/12984_2025_1556_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/962d072666ac/12984_2025_1556_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/943bc37afad6/12984_2025_1556_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/97760e33135b/12984_2025_1556_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/11761726/39923c97c239/12984_2025_1556_Fig7_HTML.jpg

相似文献

[1]
Biomechanical models in the lower-limb exoskeletons development: a review.

J Neuroeng Rehabil. 2025-1-24

[2]
Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.

J Neuroeng Rehabil. 2019-6-3

[3]
Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.

IISE Trans Occup Ergon Hum Factors. 2021

[4]
The neuromuscular control for lower limb exoskeleton- a 50-year perspective.

J Biomech. 2023-9

[5]
Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.

J Neuroeng Rehabil. 2021-2-1

[6]
Shape synthesis of an assistive knee exoskeleton device to support knee joint and rehabilitate gait.

Disabil Rehabil Assist Technol. 2019-7

[7]
Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.

Gait Posture. 2022-10

[8]
Development and Validation of a Modular Sensor-Based System for Gait Analysis and Control in Lower-Limb Exoskeletons.

Sensors (Basel). 2025-4-9

[9]
Lower Limb Exoskeleton Sensors: State-of-the-Art.

Sensors (Basel). 2022-11-23

[10]
Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.

Disabil Rehabil Assist Technol. 2016-10

引用本文的文献

[1]
Design optimization platform for assistive wearable devices applied to a knee damper exoskeleton.

Wearable Technol. 2025-7-10

[2]
Investigations on the Effects of a Passive Standing-from-Squatting and Gait Assistive Exoskeleton on Human Motion.

Bioengineering (Basel). 2025-5-30

[3]
The Effects of Imagination on Performance in Ballet: A Case Study.

Sports (Basel). 2025-4-24

[4]
Novel neuromuscular controllers with simplified muscle model and enhanced reflex modulation: A comparative study in hip exoskeletons.

Wearable Technol. 2024-12-10

本文引用的文献

[1]
Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations.

Wearable Technol. 2021-11-24

[2]
Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking.

PLoS Comput Biol. 2023-8

[3]
Assisting walking balance using a bio-inspired exoskeleton controller.

J Neuroeng Rehabil. 2023-6-27

[4]
Concept design of hybrid-actuated lower limb exoskeleton to reduce the metabolic cost of walking with heavy loads.

PLoS One. 2023

[5]
Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.

IEEE Trans Biomed Eng. 2023-6

[6]
Improving Muscle Force Distribution Model Using Reflex Excitation: Toward a Model-Based Exoskeleton Torque Optimization Approach.

IEEE Trans Neural Syst Rehabil Eng. 2023

[7]
Modelling the interaction between wearable assistive devices and digital human models-A systematic review.

Front Bioeng Biotechnol. 2023-1-10

[8]
Effects of powered ankle-foot orthoses mass distribution on lower limb muscle forces-a simulation study.

Med Biol Eng Comput. 2023-5

[9]
Opportunities and challenges in the development of exoskeletons for locomotor assistance.

Nat Biomed Eng. 2023-4

[10]
Evaluation of musculoskeletal models, scaling methods, and performance criteria for estimating muscle excitations and fiber lengths across walking speeds.

Front Bioeng Biotechnol. 2022-10-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索