Suppr超能文献

非线性弹性、蛋白质震颤与蛋白质功能转变的能量景观

Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins.

作者信息

Miyashita O, Onuchic J N, Wolynes P G

机构信息

Center for Theoretical Biological Physics, Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12570-5. doi: 10.1073/pnas.2135471100. Epub 2003 Oct 17.

Abstract

Large-scale motions of biomolecules involve linear elastic deformations along low-frequency normal modes, but for function nonlinearity is essential. In addition, unlike macroscopic machines, biological machines can locally break and then reassemble during function. We present a model for global structural transformations, such as allostery, that involve large-scale motion and possible partial unfolding, illustrating the method with the conformational transition of adenylate kinase. Structural deformation between open and closed states occurs via low-frequency modes on separate reactant and product surfaces, switching from one state to the other when energetically favorable. The switching model is the most straightforward anharmonic interpolation, which allows the barrier for a process to be estimated from a linear normal mode calculation, which by itself cannot be used for activated events. Local unfolding, or cracking, occurs in regions where the elastic stress becomes too high during the transition. Cracking leads to a counterintuitive catalytic effect of added denaturant on allosteric enzyme function. It also leads to unusual relationships between equilibrium constant and rate like those seen recently in single-molecule experiments of motor proteins.

摘要

生物分子的大规模运动涉及沿低频简正模式的线性弹性变形,但对于功能而言,非线性至关重要。此外,与宏观机器不同,生物机器在功能过程中可以局部断裂然后重新组装。我们提出了一个用于全局结构转变(如变构)的模型,该转变涉及大规模运动和可能的部分解折叠,并以腺苷酸激酶的构象转变为例进行说明。开放态和封闭态之间的结构变形通过反应物和产物表面上的低频模式发生,当能量有利时从一种状态切换到另一种状态。切换模型是最直接的非谐插值,它允许根据线性简正模式计算来估计过程的势垒,而线性简正模式计算本身不能用于活化事件。局部解折叠或破裂发生在转变过程中弹性应力变得过高的区域。破裂导致添加的变性剂对变构酶功能产生违反直觉的催化作用。它还导致平衡常数和速率之间出现异常关系,就像最近在运动蛋白的单分子实验中看到的那样。

相似文献

1
Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12570-5. doi: 10.1073/pnas.2135471100. Epub 2003 Oct 17.
2
Conformational transitions of adenylate kinase: switching by cracking.
J Mol Biol. 2007 Mar 9;366(5):1661-71. doi: 10.1016/j.jmb.2006.11.085. Epub 2006 Dec 5.
4
Simple energy landscape model for the kinetics of functional transitions in proteins.
J Phys Chem B. 2005 Feb 10;109(5):1959-69. doi: 10.1021/jp046736q.
5
Folding funnels and conformational transitions via hinge-bending motions.
Cell Biochem Biophys. 1999;31(2):141-64. doi: 10.1007/BF02738169.
6
How well can we understand large-scale protein motions using normal modes of elastic network models?
Biophys J. 2007 Aug 1;93(3):920-9. doi: 10.1529/biophysj.106.095927. Epub 2007 May 4.
8
Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11844-9. doi: 10.1073/pnas.0604375103. Epub 2006 Jul 28.
10
Protein conformational transitions explored by mixed elastic network models.
Proteins. 2007 Oct 1;69(1):43-57. doi: 10.1002/prot.21465.

引用本文的文献

1
Dynamic energy conversion in protein catalysis: From brownian motion to enzymatic function.
Comput Struct Biotechnol J. 2025 Jul 30;27:3337-3369. doi: 10.1016/j.csbj.2025.07.050. eCollection 2025.
3
Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis.
J Phys Chem B. 2024 Oct 3;128(39):9363-9372. doi: 10.1021/acs.jpcb.4c04189. Epub 2024 Sep 25.
4
Predicting protein conformational motions using energetic frustration analysis and AlphaFold2.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2410662121. doi: 10.1073/pnas.2410662121. Epub 2024 Aug 20.
6
Towards design of drugs and delivery systems with the Martini coarse-grained model.
QRB Discov. 2022 Oct 12;3:e19. doi: 10.1017/qrd.2022.16. eCollection 2022.
7
The dynamics of subunit rotation in a eukaryotic ribosome.
Biophysica. 2021 Jun;1(2):204-221. doi: 10.3390/biophysica1020016. Epub 2021 May 24.
8
Statistical learning of protein elastic network from positional covariance matrix.
Comput Struct Biotechnol J. 2023 Mar 28;21:2524-2535. doi: 10.1016/j.csbj.2023.03.033. eCollection 2023.
10
Protein dynamics: The future is bright and complicated!
Struct Dyn. 2023 Feb 27;10(1):014301. doi: 10.1063/4.0000179. eCollection 2023 Jan.

本文引用的文献

1
Raster3D: photorealistic molecular graphics.
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
2
Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9319-23. doi: 10.1073/pnas.1632476100. Epub 2003 Jul 23.
3
The protein kinase complement of the human genome.
Science. 2002 Dec 6;298(5600):1912-34. doi: 10.1126/science.1075762.
5
Conformational change of the actomyosin complex drives the multiple stepping movement.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9202-6. doi: 10.1073/pnas.132711799. Epub 2002 Jun 24.
6
The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus.
J Mol Biol. 2002 May 3;318(3):733-47. doi: 10.1016/S0022-2836(02)00135-3.
7
The linkage between protein folding and functional cooperativity: two sides of the same coin?
Annu Rev Biophys Biomol Struct. 2002;31:235-56. doi: 10.1146/annurev.biophys.31.082901.134215. Epub 2001 Oct 25.
8
Dynamics of large proteins through hierarchical levels of coarse-grained structures.
J Comput Chem. 2002 Jan 15;23(1):119-27. doi: 10.1002/jcc.1160.
9
Kinetic and catalytic mechanisms of protein kinases.
Chem Rev. 2001 Aug;101(8):2271-90. doi: 10.1021/cr000230w.
10
Statistical thermodynamics. Taking a walk on a landscape.
Science. 2001 Jul 27;293(5530):612-3. doi: 10.1126/science.1062559.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验