Yu Chieh Cheng, Raj Nixon, Chu Jhih-Wei
Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 30010, Taiwan, ROC.
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 30010, Taiwan, ROC.
Comput Struct Biotechnol J. 2023 Mar 28;21:2524-2535. doi: 10.1016/j.csbj.2023.03.033. eCollection 2023.
Positional fluctuation and covariance during protein dynamics are key observables for understanding the molecular origin of biological functions. A frequently employed potential energy function for describing protein structural variation at the coarse-gained level is elastic network model (ENM). A long-standing issue in biomolecular simulation is thus the parametrization of ENM spring constants from the components of positional covariance matrix (PCM). Based on sensitivity analysis of PCM, the direct-coupling statistics of each spring, which is a specific combination of position fluctuation and covariance, is found to exhibit prominent signal of parameter dependence. This finding provides the basis for devising the objective function and the scheme of running through the effective one-dimensional optimization of every spring by self-consistent iteration. Formal derivation of the positional covariance statistical learning (PCSL) method also motivates the necessary data regularization for stable calculations. Robust convergence of PCSL is achieved in taking an all-atom molecular dynamics trajectory or an ensemble of homologous structures as input data. The PCSL framework can also be generalized with mixed objective functions to capture specific property such as the residue flexibility profile. Such physical chemistry-based statistical learning thus provides a useful platform for integrating the mechanical information encoded in various experimental or computational data.
蛋白质动力学过程中的位置涨落和协方差是理解生物学功能分子起源的关键可观测指标。弹性网络模型(ENM)是一种常用于在粗粒度水平描述蛋白质结构变化的势能函数。因此,生物分子模拟中一个长期存在的问题是如何根据位置协方差矩阵(PCM)的分量来确定ENM弹簧常数的参数。基于对PCM的敏感性分析,发现每个弹簧的直接耦合统计量(它是位置涨落和协方差的一种特定组合)表现出显著的参数依赖性信号。这一发现为设计目标函数以及通过自洽迭代对每个弹簧进行有效的一维优化的方案提供了基础。位置协方差统计学习(PCSL)方法的形式推导也促使进行必要的数据正则化以实现稳定计算。以全原子分子动力学轨迹或同源结构集合作为输入数据时,PCSL能够实现稳健收敛。PCSL框架还可以通过混合目标函数进行推广,以捕捉诸如残基柔韧性分布等特定属性。因此,这种基于物理化学的统计学习为整合各种实验或计算数据中编码的力学信息提供了一个有用的平台。