Lachin John M, Greenhouse Samuel W, Bautista Oliver M
The Biostatistics Center, The George Washington University, 6110 Executive Boulevard, Suite 750, Rockville, MD 20852, USA.
Stat Med. 2003 Nov 15;22(21):3357-68. doi: 10.1002/sim.1637.
In many studies, a K degree of freedom large sample chi2 test is used to assess the effect of treatment on a multivariate response, such as an omnibus T2-like test of a difference between two treatment groups in any of K repeated measures. Alternately, a K df chi2 test may be used to test the equality of K+1 groups in a single outcome measure. Jennison and Turnbull (Biometrika 1991; 78: 133-141) describe group sequential chi2 and F-tests for normal errors linear models, and Proschan, Follmann and Geller (Statist. Med. 1994; 13: 1441-1452) describe group sequential tests for K+1 group comparisons. These methods apply to sequences of statistics that can be characterized as having an independent increments variance-covariance structure, thus simplifying the computation of the sequential variance-covariance matrix and the resulting sequential test boundaries. However, many commonly used statistics do not share this structure, including a Liang-Zeger (Biometrika 1986; 73: 13-22) GEE longitudinal analysis with an independence working correlation structure and a Wei-Lachin (J. Amer. Statist. Assoc. 1984; 79: 653-661) multivariate Wilcoxon rank test, among others. For such analyses, this paper describes the computation of group sequential boundaries for the interim analysis of emerging results using K df tests that are expressed as quadratic forms in a statistics vector that is distributed as multivariate normal, at least asymptotically. We derive the elements of the covariance matrix of multiple successive K df chi2 statistics based on established theorems on the distribution of quadratic forms. This covariance matrix is estimated by augmenting the data from the successive interim analyses into a single analysis from which the component sequential tests and their variance-covariance matrix can then be extracted. Boundary values for the sequential statistics can then be computed using the method of Slud and Wei (J. Amer. Statist. Assoc. 1982; 77: 862-868) or using the alpha-spending function of Lan and DeMets (Biometrika 1983; 70: 659-663) with a surrogate measure of information. An example is presented using the analysis of repeated cholesterol measurements in a clinical trial.
在许多研究中,自由度为K的大样本卡方检验用于评估治疗对多元反应的效果,比如在K次重复测量中的任意一次对两个治疗组之间差异进行类似全距T2的检验。或者,自由度为K的卡方检验可用于检验单一结果测量中K + 1个组的相等性。詹尼森和特恩布尔(《生物统计学》,1991年;78: 133 - 141)描述了针对正态误差线性模型的组序贯卡方检验和F检验,普罗尚、福尔曼和盖勒(《统计医学》,1994年;13: 1441 - 1452)描述了针对K + 1组比较的组序贯检验。这些方法适用于可被描述为具有独立增量方差 - 协方差结构的统计量序列,从而简化了序贯方差 - 协方差矩阵的计算以及由此产生的序贯检验边界。然而,许多常用统计量并不具有这种结构,包括具有独立工作相关结构的梁 - 泽格(《生物统计学》,1986年;73: 13 - 22)广义估计方程纵向分析以及魏 - 拉钦(《美国统计协会杂志》,1984年;79: 653 - 661)多元威尔科克森秩检验等。对于此类分析,本文描述了在新兴结果的中期分析中,使用自由度为K的检验计算组序贯边界的方法,这些检验至少在渐近意义上以服从多元正态分布的统计量向量中的二次形式表示。我们基于关于二次形式分布的既定定理推导了多个连续的自由度为K的卡方统计量的协方差矩阵元素。通过将连续中期分析的数据扩充为单个分析,从中提取组成序贯检验及其方差 - 协方差矩阵,来估计该协方差矩阵。然后可以使用斯路德和魏(《美国统计协会杂志》,1982年;77: 862 - 868)的方法或使用带有信息替代度量的兰和德梅茨(《生物统计学》,1983年;70: 659 - 663)的α消耗函数来计算序贯统计量的边界值。给出了一个在临床试验中对重复胆固醇测量进行分析的示例。