Lin Fa-Hsuan, McIntosh Anthony R, Agnew John A, Eden Guinevere F, Zeffiro Thomas A, Belliveau John W
Harvard-MIT Division of Health Sciences and Technology, Charlestown, MA 02446, USA.
Neuroimage. 2003 Oct;20(2):625-42. doi: 10.1016/S1053-8119(03)00333-1.
Identification of spatiotemporal interactions within/between neuron populations is critical for detection and characterization of large-scale neuronal interactions underlying perception, cognition, and behavior. Univariate analysis has been employed successfully in many neuroimaging studies. However, univariate analysis does not explicitly test for interactions between distributed areas of activity and is not sensitive to distributed responses across the brain. Multivariate analysis can explicitly test for multiple statistical models, including the designed paradigm, and allows for spatial and temporal model detection. Here, we investigate multivariate analysis approaches that take into consideration the 4D (time and space) covariance structure of the data. Principal component analysis (PCA) and independent component analysis (ICA) are two popular multivariate approaches with distinct mathematical constraints. Common difficulties in using these two different decompositions include the following: classification of the revealed components (task-related signal versus noise), overall signal-to-noise sensitivity, and the relatively low computational efficiency (multivariate analysis requires the entire raw data set and more time for model identification analysis). Using both Monte Carlo simulations and empirical data, we derived and tested the generalized partial least squares (gPLS) framework, which can incorporate both PCA and ICA decompositions with computational efficiency. The gPLS method explicitly incorporates the experimental design to simplify the identification of characteristic spatiotemporal patterns. We performed parametric modeling studies of a blocked-design experiment under various conditions, including background noise distribution, sampling rate, and hemodynamic response delay. We used a randomized grouping approach to manipulate the degrees of freedom of PCA and ICA in gPLS to characterize both paradigm coherent and transient brain responses. Simulation data suggest that in the gPLS framework, PCA mostly outperforms ICA as measured by the receiver operating curves (ROCs) in SNR from 0.01 to 100, the hemodynamic response delays from 0 to 3 TR in fMRI, background noise models of Guassian, sub-Gaussian, and super-Gaussian distributions and the number of observations from 5, 10, to 20 in each block of a six-block experiment. Further, due to selective averaging, the gPLS method performs robustly in low signal-to-noise ratio (<1) experiments. We also tested PCA and ICA using PLS in a simulated event-related fMRI data to show their similar detection. Finally, we tested our gPLS approach on empirical fMRI motor data. Using the randomized grouping method, we are able to identify both transient responses and consistent paradigm/model coherent components in the 10-epoch block design motor fMRI experiment. Overall, studies of synthetic and empirical data suggest that PLS analysis, using PCA decomposition, provides a stable and powerful tool for exploration of fMRI/behavior data.
识别神经元群体内部/之间的时空相互作用对于检测和表征感知、认知及行为背后的大规模神经元相互作用至关重要。单变量分析已在许多神经影像学研究中成功应用。然而,单变量分析并未明确检验活动分布区域之间的相互作用,且对全脑分布的反应不敏感。多变量分析可以明确检验多种统计模型,包括设计的范式,并允许进行空间和时间模型检测。在此,我们研究考虑数据的4D(时间和空间)协方差结构的多变量分析方法。主成分分析(PCA)和独立成分分析(ICA)是两种具有不同数学约束的常用多变量方法。使用这两种不同分解方法时常见的困难包括:所揭示成分的分类(任务相关信号与噪声)、整体信噪比敏感度以及相对较低的计算效率(多变量分析需要整个原始数据集且进行模型识别分析所需时间更长)。通过蒙特卡罗模拟和实证数据,我们推导并测试了广义偏最小二乘法(gPLS)框架,该框架可以将PCA和ICA分解结合起来并提高计算效率。gPLS方法明确纳入实验设计以简化特征性时空模式的识别。我们在各种条件下对一个组块设计实验进行了参数建模研究,包括背景噪声分布、采样率和血流动力学响应延迟。我们使用随机分组方法来控制gPLS中PCA和ICA的自由度,以表征范式相干和瞬态脑反应。模拟数据表明,在gPLS框架中,在0.01至100的信噪比、功能磁共振成像中0至3个时间重复单元(TR)的血流动力学响应延迟、高斯、次高斯和超高斯分布的背景噪声模型以及六组块实验中每组块5、10至20次观测的情况下,通过接收者操作曲线(ROC)衡量,PCA大多优于ICA。此外,由于选择性平均,gPLS方法在低信噪比(<1)实验中表现稳健。我们还在模拟的事件相关功能磁共振成像数据中使用PLS测试了PCA和ICA,以显示它们相似的检测能力。最后,我们在实证功能磁共振成像运动数据上测试了我们的gPLS方法。使用随机分组方法,我们能够在10次组块设计的运动功能磁共振成像实验中识别瞬态反应和一致的范式/模型相干成分。总体而言,合成数据和实证数据的研究表明,使用PCA分解的PLS分析为探索功能磁共振成像/行为数据提供了一个稳定且强大的工具。