Suppr超能文献

Vascular targeting effects of ZD6126 in a C3H mouse mammary carcinoma and the enhancement of radiation response.

作者信息

Horsman Michael R, Murata Rumi

机构信息

Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.

出版信息

Int J Radiat Oncol Biol Phys. 2003 Nov 15;57(4):1047-55. doi: 10.1016/s0360-3016(03)00769-7.

Abstract

PURPOSE

The aim of this study was to investigate the pathophysiologic effects induced by the novel vascular targeting agent ZD6126 in a C3H mouse mammary carcinoma and to evaluate the agent's ability to inhibit tumor growth either when given alone or in combination with radiation.

METHODS AND MATERIALS

A C3H mammary carcinoma grown in the right rear foot of female CDF1 mice was treated when at 200 mm(3) in size. ZD6126 was dissolved in saline and injected intraperitoneally. Blood perfusion was measured using the RbCl extraction procedure, tumor oxygen (pO(2)) status was assessed with the Eppendorf electrode, and tumor necrosis was estimated from histologic sections. Radiation (240-kV X-rays) was locally administered to tumors of restrained nonanesthetized mice, and response was assessed using a tumor growth assay.

RESULTS

ZD6126 induced a significant dose- and time-dependent decrease in tumor perfusion, reaching a maximal 70% reduction around 3 h after injecting 150-300 mg/kg. However, full recovery was seen within 6 h. A 200 mg/kg dose significantly decreased tumor oxygenation status at 3 h (median pO(2) decreased from 7 to 3 mm Hg; % pO(2) values <or=2.5 mm Hg increased from 30% to 55%) and by 24 h had significantly increased necrotic fraction from 14.5% to 25.2%. This ZD6126 dose resulted in a small, yet significant, 1.4 days inhibition of tumor growth when given alone. It also enhanced the tumor response to radiation, giving rise to a significant 1.3-fold increase in the slope of the radiation dose-response curve. Of the normal tissues, only muscle (at 3 h) and spleen (at 6 h) showed any significant reduction in perfusion after injecting 200 mg/kg, but these transient decreases were only 32% and 49%, respectively.

CONCLUSIONS

Our preclinical studies clearly demonstrate a tumor-specific reduction in blood perfusion by ZD6126. Although these changes were transient, they were sufficient to increase tumor necrosis, inhibit tumor growth, and enhance radiation response.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验