Suppr超能文献

F-肌动蛋白溶液热激发及肌动蛋白丝生长动力学的准弹性光散射研究

Quasielastic light scattering study of thermal excitations of F-actin solutions and of growth kinetics of actin filaments.

作者信息

Piekenbrock T, Sackmann E

机构信息

Physik Department (Biophysics Laboratory), Technische Universität München, Garching, Germany.

出版信息

Biopolymers. 1992 Nov;32(11):1471-89. doi: 10.1002/bip.360321107.

Abstract

In the first part of this work we report quasielastic light scattering (QELS) studies of the internal dynamics of transient actin networks over a time range of 10(-6)-10(-2) s, scattering angles between zeta = 20 degrees and 150 degrees, and a concentration range of 0.015 (0.3) to 0.7 mg/mL (15 microM). We confirm our previous result that (1) the dynamic structure factor g(q,t) is determined by the thermally excited undulations of the actin filaments and (2) that the initial decay of g(q, t) scales as g(q, t) varies; is directly proportional to exp(-q alpha t) while the long time decay scales as g(q, t) varies; is directly proportional to exp [-(Aq alpha t) 2/3] with alpha = 2.75. The deviation of alpha from the theoretical value of alpha = 3 predicted for Rouse-Zimm chains is similar to that found for high molecular weight macromolecular solutions by QELS. A refined analysis of the dynamic structure factor showed that it can be interpreted in terms of three relaxation processes (besides the contribution of the residual monomer diffusion): (1) the dominant Rouse-Zimm dynamics, which comprises between 65 (at high concentrations) and 85% of the signal; (2) a fast relaxation process with a decay constant of gamma = 9 x 10(3) s-1, which contributes at all concentrations with the same amplitude; and (3) a nonexponential ultraslow contribution of the form g(us) varies; is directly proportional to exp [(-gamma ust)]1/4. The third contribution appears only at high concentrations and increases strongly with decreasing scattering angles. It is thus attributed to fluctuations of the mesh size of the transient actin network. In the second part we show that high sensitivity QELS may be applied to follow the actin polymerization process at low temperatures (10 degrees C). The apparent diffusion coefficient and the static scattering intensity of the actin filaments were determined as functions of polymerization time tpol. We show that the process consists of the rapid growth of a few filaments that become very long (approximately 10 microns; even at actin concentrations of 0.04 micrograms/mL) near the critical growth concentration of 0.012 micrograms/mL, as is expected for a growth process determined by nucleation. Finally, we studied actin networks polymerized in the presence of complexes of gelsolin with actin. By application of the CONTIN program we could determine the length distribution of the filaments.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

在本研究的第一部分,我们报告了对瞬态肌动蛋白网络内部动力学的准弹性光散射(QELS)研究,时间范围为10⁻⁶ - 10⁻²秒,散射角在ζ = 20°至150°之间,浓度范围为0.015(0.3)至0.7毫克/毫升(15微摩尔)。我们证实了之前的结果:(1)动态结构因子g(q,t)由肌动蛋白丝的热激发波动决定;(2)g(q, t)的初始衰减随g(q, t)变化而变化;与exp(-qαt)成正比,而长时间衰减随g(q, t)变化而变化;与exp [-(Aqαt)²/³]成正比,其中α = 2.75。α与Rouse-Zimm链预测的理论值α = 3的偏差与QELS对高分子量大分子溶液的研究结果相似。对动态结构因子的精细分析表明,它可以用三个弛豫过程来解释(除了残余单体扩散的贡献):(1)占主导的Rouse-Zimm动力学,在信号中占65%(高浓度时)至85%;(2)一个快速弛豫过程,衰减常数为γ = 9×10³秒⁻¹,在所有浓度下贡献相同幅度;(3)一种非指数形式的超慢贡献,g(us)随变化;与exp [(-γust)]¹/⁴成正比。第三种贡献仅在高浓度时出现,并随散射角减小而强烈增加。因此,它归因于瞬态肌动蛋白网络网孔大小的波动。在第二部分中,我们表明高灵敏度QELS可用于跟踪低温(10℃)下的肌动蛋白聚合过程。确定了肌动蛋白丝的表观扩散系数和静态散射强度作为聚合时间tpol的函数。我们表明,该过程包括少数细丝的快速生长,这些细丝在临界生长浓度0.012微克/毫升附近变得非常长(约10微米;即使在肌动蛋白浓度为0.04微克/毫升时),这与成核决定的生长过程预期相符。最后,我们研究了在凝溶胶蛋白与肌动蛋白复合物存在下聚合的肌动蛋白网络。通过应用CONTIN程序,我们可以确定细丝的长度分布。(摘要截断于400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验