von Eye Alexander, Bergman Lars R
Department of Psychology, Michigan State University, East Lansing 48824-1117, USA.
Dev Psychopathol. 2003 Summer;15(3):553-80. doi: 10.1017/s0954579403000294.
This article deals with alternative research strategies for developmental psychopathology. It argues that most applications of statistical methods in empirical research are variable centered, not person oriented. As a result, conclusions are often drawn that fail to do justice to the diverse nature of populations. It is recommended that we take seriously the importance of the implications of data aggregation. The difficulties of making inferences from a more aggregated level of analysis to a less aggregated level are explained and exemplified. We explain that a set of variables displays dimensional identity if the variable relationships remain unchanged across the levels or categories of other variables. Data examples of intelligence divergence and of Child Behavior Checklist subpopulation differences show that lack of dimensional identity can lead to incorrect conclusions. Schmitz' theorems on aggregation and the validity of results at the aggregate level for individuals are illustrated using data from a study on the development of alcoholism and discussed from a person-oriented perspective. Statistical methods suitable for person-oriented data analysis are reviewed.
本文探讨了发展心理病理学的替代研究策略。文章认为,实证研究中统计方法的大多数应用都是以变量为中心的,而非以人为本。因此,得出的结论往往无法公正地反映人群的多样性。建议我们认真对待数据聚合的重要性。文中解释并举例说明了从较聚合的分析层面推断到较不聚合层面的困难。我们解释说,如果变量关系在其他变量的各个层面或类别中保持不变,那么一组变量就显示出维度一致性。智力差异和儿童行为检查表亚群体差异的数据示例表明,缺乏维度一致性可能导致错误的结论。利用一项关于酗酒发展的研究数据,阐述了施密茨关于聚合以及聚合层面结果对个体有效性的定理,并从以人为本的角度进行了讨论。综述了适用于以人为本数据分析的统计方法。