Kim Soo-Kyung, Gao Zhan-Guo, Van Rompaey Philippe, Gross Ariel S, Chen Aishe, Van Calenbergh Serge, Jacobson Kenneth A
Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
J Med Chem. 2003 Nov 6;46(23):4847-59. doi: 10.1021/jm0300431.
A three-dimensional model of the human A(2A) adenosine receptor (AR) and its docked ligands was built by homology to rhodopsin and validated with site-directed mutagenesis and the synthesis of chemically complementary agonists. Different binding modes of A(2A)AR antagonists and agonists were compared by using the FlexiDock automated docking procedure, with manual adjustment. Putative binding regions for the 9H-purine ring in agonist NECA 3 and the 1H-[1,2,4]triazolo[1,5-c]quinazoline ring in antagonist CGS15943 1 overlapped, and the exocyclic amino groups of each were H-bonded to the side chain of N(6.55). For bound agonist, H-bonds formed between the ribose 3'- and 5'-substituents and the hydrophilic amino acids T(3.36), S(7.42), and H(7.43), and the terminal methyl group of the 5'-uronamide interacted with the hydrophobic side chain of F(6.44). Formation of the agonist complex destabilized the ground-state structure of the A(2A)AR, which was stabilized through a network of H-bonding and hydrophobic interactions in the transmembrane helical domain (TM) regions, facilitating a conformational change upon activation. Both flexibility of the ribose moiety, required for the movement of TM6, and its H-bonding to the receptor were important for agonism. Two sets of interhelical H-bonds involved residues conserved among ARs but not in rhodopsin: (1) E13(1.39) and H278(7.43) and (2) D52(2.50), with the highly conserved amino acids N280(7.45) and S281(7.46), and N284(7.49) with S91(3.39). Most of the amino acid residues lining the putative binding site(s) were conserved among the four AR subtypes. The A(2A)AR/3 complex showed a preference for an intermediate conformation about the glycosidic bond, unlike in the A(3)AR/3 complex, which featured an anti-conformation. Hydrophilic amino acids of TMs 3 and 7 (ribose-binding region) were replaced with anionic residues for enhanced binding to amine-derivatized agonists. We identified new neoceptor (T88D)-neoligand pairs that were consistent with the model.
通过与视紫红质的同源性构建了人 A(2A) 腺苷受体 (AR) 及其对接配体的三维模型,并通过定点诱变和化学互补激动剂的合成进行了验证。使用 FlexiDock 自动对接程序并进行手动调整,比较了 A(2A)AR 拮抗剂和激动剂的不同结合模式。激动剂 NECA 3 中 9H-嘌呤环和拮抗剂 CGS15943 1 中 1H-[1,2,4]三唑并[1,5-c]喹唑啉环的推定结合区域重叠,且各自的环外氨基与 N(6.55) 的侧链形成氢键。对于结合的激动剂,核糖 3'-和 5'-取代基与亲水性氨基酸 T(3.36)、S(7.42) 和 H(7.43) 之间形成氢键,5'-脲酰胺的末端甲基与 F(6.44) 的疏水侧链相互作用。激动剂复合物的形成使 A(2A)AR 的基态结构不稳定,该结构通过跨膜螺旋结构域 (TM) 区域中的氢键和疏水相互作用网络得以稳定,促进了激活时的构象变化。核糖部分的灵活性(TM6 移动所必需)及其与受体的氢键形成对于激动作用都很重要。两组螺旋间氢键涉及 ARs 中保守但视紫红质中不存在的残基:(1) E13(1.39) 和 H278(7.43) 以及 (2) D52(2.50) 与高度保守的氨基酸 N280(7.45) 和 S281(7.46),以及 N284(7.49) 与 S91(3.39)。推定结合位点内衬的大多数氨基酸残基在四种 AR 亚型中是保守的。与 A(3)AR/3 复合物不同,A(2A)AR/3 复合物对糖苷键的中间构象表现出偏好,A(3)AR/3 复合物的特征是反式构象。将 TM3 和 TM7(核糖结合区域)的亲水性氨基酸替换为阴离子残基,以增强与胺衍生激动剂的结合。我们鉴定出与该模型一致的新的新受体 (T88D)-新配体对。