Suppr超能文献

来自设计组合文库的全新蛋白质的溶液结构

Solution structure of a de novo protein from a designed combinatorial library.

作者信息

Wei Yinan, Kim Seho, Fela David, Baum Jean, Hecht Michael H

机构信息

Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13270-3. doi: 10.1073/pnas.1835644100. Epub 2003 Oct 30.

Abstract

Combinatorial libraries of de novo amino acid sequences can provide a rich source of diversity for the discovery of novel proteins. Randomly generated sequences, however, rarely fold into well ordered protein-like structures. To enhance the quality of a library, diversity must be focused into those regions of sequence space most likely to yield well folded structures. We have constructed focused libraries of de novo sequences by designing the binary pattern of polar and nonpolar amino acids to favor structures that contain abundant secondary structure, while simultaneously burying hydrophobic side chains in the protein interior and exposing hydrophilic side chains to solvent. Because binary patterning specifies only the polar/nonpolar periodicity, but not the identities of the side chains, detailed structural features, including packing interactions, cannot be designed a priori. Can binary patterned libraries nonetheless encode well folded proteins? An unambiguous answer to this question requires determination of a 3D structure. We used NMR spectroscopy to determine the structure of S-824, a novel protein from a recently constructed library of 102-residue sequences. This library is "naïve" in that it has not been subjected to high-throughput screens or directed evolution. The experimentally determined structure of S-824 is a four-helix bundle, as specified by the design. As dictated by the binary-code strategy, nonpolar side chains are buried in the protein interior, and polar side chains are exposed to solvent. The polypeptide backbone and buried side chains are well ordered, demonstrating that S-824 is not a molten globule and forms a unique structure. These results show that amino acid sequences that have neither been selected by evolution, nor designed by computer, nor isolated by high-throughput screening, can form native-like structures. These findings validate the binary-code strategy as an effective method for producing vast collections of well folded de novo proteins.

摘要

从头合成氨基酸序列的组合文库可为发现新型蛋白质提供丰富的多样性来源。然而,随机生成的序列很少能折叠成结构良好的类蛋白质结构。为提高文库质量,必须将多样性集中于序列空间中最有可能产生折叠良好结构的区域。我们通过设计极性和非极性氨基酸的二元模式来构建从头合成序列的聚焦文库,以利于形成含有丰富二级结构的结构,同时将疏水侧链埋入蛋白质内部,并使亲水侧链暴露于溶剂中。由于二元模式仅指定了极性/非极性周期性,而未指定侧链的具体身份,因此包括堆积相互作用在内的详细结构特征无法预先设计。那么,二元模式文库能否编码折叠良好的蛋白质呢?要明确回答这个问题需要确定三维结构。我们利用核磁共振光谱法确定了S - 824的结构,S - 824是一种来自最近构建的102个残基序列文库的新型蛋白质。该文库是“原始的”,因为它尚未经过高通量筛选或定向进化。实验测定的S - 824结构是一个四螺旋束,与设计相符。正如二元编码策略所规定的,非极性侧链埋入蛋白质内部,极性侧链暴露于溶剂中。多肽主链和埋藏的侧链排列有序,表明S - 824不是熔球态,而是形成了独特的结构。这些结果表明,既未经过进化选择、也未经过计算机设计、亦未通过高通量筛选分离的氨基酸序列能够形成天然样结构。这些发现验证了二元编码策略是一种生产大量折叠良好的从头合成蛋白质的有效方法。

相似文献

1
Solution structure of a de novo protein from a designed combinatorial library.来自设计组合文库的全新蛋白质的溶液结构
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13270-3. doi: 10.1073/pnas.1835644100. Epub 2003 Oct 30.

引用本文的文献

1
Proteins Template the Formation of Semiconductor Quantum Dots.蛋白质引导半导体量子点的形成。
ACS Cent Sci. 2025 May 27;11(6):983-993. doi: 10.1021/acscentsci.4c01826. eCollection 2025 Jun 25.
3
Design of complicated all-α protein structures.复杂全α 蛋白结构的设计。
Nat Struct Mol Biol. 2024 Feb;31(2):275-282. doi: 10.1038/s41594-023-01147-9. Epub 2024 Jan 4.
5
Which came first: the chicken, the egg, or guanine?是先有鸡,还是先有蛋,还是鸟嘌呤?
RNA. 2023 Sep;29(9):1317-1324. doi: 10.1261/rna.079613.123. Epub 2023 Jun 7.
6
A de novo protein catalyzes the synthesis of semiconductor quantum dots.一种从头合成的蛋白质可催化半导体量子点的合成。
Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2204050119. doi: 10.1073/pnas.2204050119. Epub 2022 Dec 12.
8

本文引用的文献

10
De novo amyloid proteins from designed combinatorial libraries.来自设计组合文库的新生淀粉样蛋白。
Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11211-6. doi: 10.1073/pnas.96.20.11211.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验