Palacián Jesús
Departamento de Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain.
Chaos. 2003 Dec;13(4):1188-204. doi: 10.1063/1.1613551.
A method to approximate some invariant sets of dynamical systems defined through an autonomous m-dimensional ordinary differential equation is presented. Our technique is based on the calculation of formal symmetries and generalized normal forms associated with the system of equations, making use of Lie transformations for smooth vector fields. Once a symmetry is determined up to a certain order, a reduction map allows us to pass from the equation in normal form to a related equation in a certain reduced space, the so-called reduced system of dimension s<m. Now, under certain regularity conditions, a nondegenerate p-dimensional invariant set of the reduced system is formally transformed into a (p+m-s)-dimensional invariant set of the original equation. Moreover, the existence of some actual (p+m-s)-dimensional invariant manifolds of the initial equations related to the ones determined through our analysis can be proven under certain hypotheses that we make explicit. The procedure is illustrated by characterizing the set of all periodic orbits sufficiently close to the origin of the Hamiltonian vector field defined by the Henon and Heiles family.
提出了一种近似通过自治的m维常微分方程定义的动力系统的一些不变集的方法。我们的技术基于与方程组相关的形式对称性和广义范式的计算,利用光滑向量场的李变换。一旦确定了某一阶的对称性,约化映射使我们能够从范式方程过渡到某个约化空间中的相关方程,即所谓的维数s < m的约化系统。现在,在某些正则性条件下,约化系统的非退化p维不变集被形式地变换为原方程的(p + m - s)维不变集。此外,在我们明确给出的某些假设下,可以证明与通过我们的分析确定的初始方程相关的一些实际的(p + m - s)维不变流形的存在性。通过刻画与亨农和海尔斯族定义的哈密顿向量场原点足够接近的所有周期轨道集来说明该过程。