Suppr超能文献

关于使用稳定化变换来检测高维流中不稳定周期轨道的应用。

On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows.

机构信息

Department of Mathematics, University of Strathclyde, Glasgow, United Kingdom.

出版信息

Chaos. 2009 Sep;19(3):033138. doi: 10.1063/1.3222860.

Abstract

We explore the possibility of extending the stabilizing transformations approach [J. J. Crofts and R. L. Davidchack, SIAM J. Sci. Comput. (USA) 28, 1275 (2006)]. to the problem of locating large numbers of unstable periodic orbits in high-dimensional flows, in particular those that result from spatial discretization of partial differential equations. The approach has been shown to be highly efficient when detecting large sets of periodic orbits in low-dimensional maps. Extension to low-dimensional flows has been achieved by the use of an appropriate Poincare surface of section [D. Pingel, P. Schmelcher, and F. K. Diakonos, Phys. Rep. 400, 67 (2004)]. For the case of high-dimensional flows, we show that it is more efficient to apply stabilizing transformations directly to the flows without the use of the Poincare surface of section. We use the proposed approach to find many unstable periodic orbits in the model example of a chaotic spatially extended system-the Kuramoto-Sivashinsky equation. The performance of the proposed method is compared against other methods such as Newton-Armijo and Levenberg-Marquardt algorithms. In the latter case, we also argue that the Levenberg-Marquardt algorithm, or any other optimization-based approach, is more efficient and simpler in implementation when applied directly to the detection of periodic orbits in high-dimensional flows without the use of the Poincare surface of section or other additional constraints.

摘要

我们探索了将稳定变换方法[J. J. Crofts 和 R. L. Davidchack,SIAM J. Sci. Comput.(美国)28,1275(2006)]扩展到高维流动中定位大量不稳定周期轨道问题的可能性,特别是那些由偏微分方程的空间离散化引起的问题。该方法在检测低维映射中的大量周期轨道时显示出非常高效。通过使用适当的庞加莱截面[D. Pingel、P. Schmelcher 和 F. K. Diakonos,Phys. Rep. 400, 67(2004)],已经实现了向低维流动的扩展。对于高维流动的情况,我们表明直接将稳定变换应用于流动而不使用庞加莱截面更为有效。我们使用所提出的方法在混沌空间扩展系统模型示例- Kuramoto-Sivashinsky 方程中找到了许多不稳定的周期轨道。所提出的方法的性能与其他方法(例如牛顿-Armijo 和 Levenberg-Marquardt 算法)进行了比较。在后一种情况下,我们还认为,在不使用庞加莱截面或其他附加约束的情况下,将 Levenberg-Marquardt 算法或任何其他基于优化的方法直接应用于高维流动中的周期轨道检测时,效率更高且实现更简单。

相似文献

6
Computer systems are dynamical systems.计算机系统是动态系统。
Chaos. 2009 Sep;19(3):033124. doi: 10.1063/1.3187791.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验