Rohde Gustavo K, Aldroubi Akram, Dawant Benoit M
STBB/LIMB/NICHD, National Institutes of Health, Bethesda, MD 02872, USA.
IEEE Trans Med Imaging. 2003 Nov;22(11):1470-9. doi: 10.1109/TMI.2003.819299.
Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use.
医学图像的非刚性配准对于许多应用都很重要,比如创建群体平均值、基于图谱的分割,或者对功能磁共振成像(fMRI)图像进行几何校正等等。近年来,已经提出了许多方法来解决这个问题,其中一类方法涉及在样条的规则网格上最大化基于互信息(MI)的目标函数。这种方法已经取得了很好的效果,但其计算复杂度与配准图像中最小结构所需变换的顺应性成正比。在此,我们提出一种允许对变换顺应性进行空间自适应调整的方法。这种空间自适应调整使我们能够减少整体变换中的自由度数量,从而加快处理速度并改善其收敛特性。为了开发这种方法,我们引入了几个新颖之处:1)我们依赖径向对称基函数,而不是传统上用于对变形场进行建模的B样条;2)我们提出一种度量标准来识别配准不佳且需要改进变换的区域;3)我们将全局配准问题分解为几个较小的问题;4)我们引入一种新的约束方案,使我们能够生成拓扑正确的变换。我们将我们提出的方法与更传统的方法进行比较,并表明我们的新算法优于当前使用的算法。