Suppr超能文献

基于加权主动形状模型的内耳磁共振图像自动分割。

Automatic Segmentation of Intracochlear Anatomy in MR Images Using a Weighted Active Shape Model.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3573-3576. doi: 10.1109/EMBC46164.2021.9630332.

Abstract

There is evidence that cochlear MR signal intensity may be useful in prognosticating the risk of hearing loss after middle cranial fossa (MCF) resection of acoustic neuroma (AN), but the manual segmentation of this structure is difficult and prone to error. This hampers both large-scale retrospective studies and routine clinical use of this information. To address this issue, we present a fully automatic method that permits the segmentation of the intra-cochlear anatomy in MR images, which uses a weighted active shape model we have developed and validated to segment the intra-cochlear anatomy in CT images. We take advantage of a dataset for which both CT and MR images are available to validate our method on 132 ears in 66 high-resolution T2-weighted MR images. Using the CT segmentation as ground truth, we achieve a mean Dice (DSC) value of 0.81 and 0.79 for the scala tympani (ST) and the scala vestibuli (SV), which are the two main intracochlear structures.Clinical Relevance- The proposed method is accurate and fully automated for MR image segmentation. It can be used to support large retrospective studies that explore relations between MR signal in preoperative images and outcomes. It can also facilitate the routine and clinical use of this information.

摘要

有证据表明,耳蜗磁共振(MR)信号强度可能有助于预测听神经瘤(AN)经中颅窝(MCF)切除后听力损失的风险,但这种结构的手动分割很困难且容易出错。这既妨碍了大规模的回顾性研究,也妨碍了该信息的常规临床应用。为了解决这个问题,我们提出了一种完全自动的方法,可以对 MR 图像中的耳蜗内解剖结构进行分割,该方法使用我们开发和验证的加权主动形状模型来对 CT 图像中的耳蜗内解剖结构进行分割。我们利用一个同时提供 CT 和 MR 图像的数据集,在 66 张高分辨率 T2 加权 MR 图像中的 132 只耳朵上验证了我们的方法。使用 CT 分割作为金标准,我们在鼓阶(ST)和前庭阶(SV)两个主要的耳蜗内结构上实现了平均骰子系数(DSC)值为 0.81 和 0.79。

临床相关性- 所提出的方法对于 MR 图像分割是准确且全自动的。它可用于支持探索术前图像中 MR 信号与结果之间关系的大型回顾性研究。它还可以促进该信息的常规和临床应用。

相似文献

1
Automatic Segmentation of Intracochlear Anatomy in MR Images Using a Weighted Active Shape Model.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3573-3576. doi: 10.1109/EMBC46164.2021.9630332.
2
Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images.
Comput Methods Programs Biomed. 2020 Jul;191:105387. doi: 10.1016/j.cmpb.2020.105387. Epub 2020 Feb 15.
3
Automatic segmentation of intracochlear anatomy in conventional CT.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2625-32. doi: 10.1109/TBME.2011.2160262. Epub 2011 Jun 23.
4
Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients.
Med Image Anal. 2014 Apr;18(3):605-15. doi: 10.1016/j.media.2014.02.001. Epub 2014 Feb 18.
5
Automatic cochlear multimodal 3D image segmentation and analysis using atlas-model-based method.
Cochlear Implants Int. 2024 Jan;25(1):46-58. doi: 10.1080/14670100.2023.2274199. Epub 2023 Nov 3.
7
Validation of active shape model techniques for intracochlear anatomy segmentation in computed tomography images.
J Med Imaging (Bellingham). 2023 Jul;10(4):044003. doi: 10.1117/1.JMI.10.4.044003. Epub 2023 Jul 19.
9
Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
Eur Radiol. 2020 Feb;30(2):823-832. doi: 10.1007/s00330-019-06441-z. Epub 2019 Oct 24.
10
Atlas-based segmentation of cochlear microstructures in cone beam CT.
Int J Comput Assist Radiol Surg. 2021 Mar;16(3):363-373. doi: 10.1007/s11548-020-02304-x. Epub 2021 Feb 13.

本文引用的文献

1
Cochlear T2 Signal May Predict Hearing Outcomes After Resection of Acoustic Neuroma.
Otol Neurotol. 2021 Oct 1;42(9):1399-1407. doi: 10.1097/MAO.0000000000003228.
2
Deep learning for the fully automated segmentation of the inner ear on MRI.
Sci Rep. 2021 Feb 3;11(1):2885. doi: 10.1038/s41598-021-82289-y.
3
MRI of the Internal Auditory Canal, Labyrinth, and Middle Ear: How We Do It.
Radiology. 2020 Nov;297(2):252-265. doi: 10.1148/radiol.2020201767. Epub 2020 Sep 22.
4
Inner Ear Enhancement With Delayed 3D-FLAIR MRI Imaging in Vestibular Schwannoma.
Otol Neurotol. 2020 Oct;41(9):1274-1279. doi: 10.1097/MAO.0000000000002768.
5
HeadLocNet: Deep convolutional neural networks for accurate classification and multi-landmark localization of head CTs.
Med Image Anal. 2020 Apr;61:101659. doi: 10.1016/j.media.2020.101659. Epub 2020 Jan 28.
6
Cochlear MRI Signal Change Following Vestibular Schwannoma Resection Depends on Surgical Approach.
Otol Neurotol. 2019 Dec;40(10):e999-e1005. doi: 10.1097/MAO.0000000000002361.
8
Pattern of cochlear obliteration after vestibular Schwannoma resection according to surgical approach.
Laryngoscope. 2020 Feb;130(2):474-481. doi: 10.1002/lary.27945. Epub 2019 Mar 27.
9
Preliminary Results With Image-guided Cochlear Implant Insertion Techniques.
Otol Neurotol. 2018 Aug;39(7):922-928. doi: 10.1097/MAO.0000000000001850.
10
Cochlear Patency After Translabyrinthine Vestibular Schwannoma Surgery.
Otol Neurotol. 2018 Aug;39(7):e575-e578. doi: 10.1097/MAO.0000000000001858.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验