Suppr超能文献

Ischemic insult exacerbates acrolein-induced conduction loss and axonal membrane disruption in guinea pig spinal cord white matter.

作者信息

Peasley Melissa A, Shi Riyi

机构信息

Department of Basic Medical Sciences, Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.

出版信息

J Neurol Sci. 2003 Dec 15;216(1):23-32. doi: 10.1016/s0022-510x(03)00201-6.

Abstract

Cellular destruction following ischemic insult may be due to secondary injury mechanisms, not the oxygen-glucose deprivation itself. We have examined the effect of acrolein, an aldehyde product of lipid peroxidation (LPO) and oxidative stress, on the axons in isolated guinea pig spinal cord white matter following ischemic insult. We have found that acrolein at 50 microM, which is unharmful to spinal cord when applied alone, causes action potential conduction failure and membrane disruption following 1 to 2 h of exposure when applied during the reperfusion period. Ischemic insult also exacerbates the effect of acrolein at 200 microM, which does inflict functional and anatomical damage when applied alone. Unlike metabolic poisoning, acrolein-mediated damage is not a function of axonal size and does not affect the refractoriness in response to dual and multiple stimuli. These results indicate that spinal cord axons, in addition to experiencing elevated free radicals, are more vulnerable to acrolein attack when the level of oxygen and glucose is low. We conclude that free radicals and lipid peroxidation in general, and acrolein in specific, may play a critical role in cellular destruction and functional loss in such injury.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验