Ivancich Anabella, Jakopitsch Christa, Auer Markus, Un Sun, Obinger Christian
Service de Bioénergétique, URA 2096 CNRS, Département de Biologie Joliot-Curie, CEA Saclay, 91191 Gif-sur-Yvette, France.
J Am Chem Soc. 2003 Nov 19;125(46):14093-102. doi: 10.1021/ja035582+.
Catalase-peroxidases are bifunctional heme enzymes with a high structural homology to peroxidases from prokaryotic origin and a catalatic activity comparable to monofunctional catalases. These unique features of catalase-peroxidases make them good systems to study and understand the role of alternative electron pathways both in catalases and peroxidases. In particular, it is of interest to study the poorly understood role of tyrosyl and tryptophanyl radicals as alternative cofactors in the catalytic cycle of catalases and peroxidases. In this work, we have used a powerful combination of multifrequency EPR spectroscopy, isotopic labeling of tryptophan and tyrosine residues, and site-directed mutagenesis to unequivocally identify the reactive intermediates formed by the wild-type Synechocystis PCC6803 catalase-peroxidase. Selected variants of the heme distal and proximal sides of the Synechocystis enzyme were investigated. Variants on the aromatic residues of the short stretch located relatively close to the heme and spanning the distal and proximal sides were also investigated. In the wild-type enzyme, the EPR signal of the catalases and peroxidases (typical) Compound I intermediate [Fe(IV)=O por.+] was observed. Two protein-based radical intermediates were also detected and identified as a Tyr. and a Trp. . The site of Trp. is proposed to be Trp 106, a residue belonging to the conserved short stretch in catalase-peroxidases and located at a 7-8 A distance to the heme propionate groups. An extensive hydrogen-bonding network on the heme distal side, involving Trp122, His123, Arg119, seven structural waters, the heme 6-propionate group, and Trp106, is proposed to have a key role on the formation of the tryptophanyl radical. We used high-field EPR spectroscopy (95-285 GHz) to resolve the g-anisotropy of the protein-based radicals in Synechocystis catalase-peroxidase. The broad gx component of the HF EPR spectrum of the Tyr. in Synechocystis catalase-peroxidase was consistent with a distributed electropositive protein environment to the tyrosyl radical.
过氧化氢酶-过氧化物酶是双功能血红素酶,与原核生物来源的过氧化物酶具有高度的结构同源性,其催化活性与单功能过氧化氢酶相当。过氧化氢酶-过氧化物酶的这些独特特性使其成为研究和理解过氧化氢酶和过氧化物酶中替代电子途径作用的良好体系。特别值得关注的是,研究酪氨酸和色氨酸自由基作为过氧化氢酶和过氧化物酶催化循环中替代辅因子的作用,目前对此了解甚少。在这项工作中,我们使用了多频电子顺磁共振光谱、色氨酸和酪氨酸残基的同位素标记以及定点诱变的强大组合,以明确鉴定野生型集胞藻PCC6803过氧化氢酶-过氧化物酶形成的反应中间体。对集胞藻酶血红素远端和近端侧的选定变体进行了研究。还研究了位于相对靠近血红素且跨越远端和近端侧的短片段芳香族残基上的变体。在野生型酶中,观察到了过氧化氢酶和过氧化物酶(典型)化合物I中间体[Fe(IV)=O por.+]的电子顺磁共振信号。还检测到了两种基于蛋白质的自由基中间体,并鉴定为酪氨酸和色氨酸。色氨酸的位点被认为是色氨酸106,它是过氧化氢酶-过氧化物酶中保守短片段的一个残基,位于距血红素丙酸基团7-8埃的距离处。有人提出,血红素远端侧广泛的氢键网络,涉及色氨酸122、组氨酸123、精氨酸119、七个结构水、血红素6-丙酸基团和色氨酸106,在色氨酸自由基的形成中起关键作用。我们使用高场电子顺磁共振光谱(95-285 GHz)来解析集胞藻过氧化氢酶-过氧化物酶中基于蛋白质的自由基的g-各向异性。集胞藻过氧化氢酶-过氧化物酶中酪氨酸的高频电子顺磁共振光谱的宽gx分量与酪氨酸自由基周围分布的正电蛋白质环境一致。