Luck Linda A, Moravan Michael J, Garland John E, Salopek-Sondi Branka, Roy Dipankar
Department for Chemistry, Clarkson University, PO Box 5810, Potsdam, NY 13699, USA.
Biosens Bioelectron. 2003 Nov 30;19(3):249-59. doi: 10.1016/s0956-5663(03)00198-2.
This paper demonstrates potential applications of two periplasmic receptor proteins from E. coli as sensing elements for biosensors using the surface plasmon resonance (SPR) technique. These molecules, namely the aspartate to cysteine mutant of the leucine-specific receptor (LS-D1C) and the glutamine to cysteine mutant of the D-glucose/D-galactose receptor (GGR-Q26C) proteins, are chemisorbed on a thin (approximately 40 nm) Au film in neutral K2HPO4 buffers. Using angle and time resolved SPR measurements; we show that adsorption behaviors of both proteins are dominated by diffusion-free second order Langmuir kinetics. We also show that the protein-modified Au films exhibit measurable SPR shifts upon binding to their respective target ligands. According to these SPR data, the kinetics of ligand binding for both LS-D1C and GGR-Q26C are governed by irreversible first order diffusion limited Langmuir model. The utility of the SPR technique for studying reactions of biological molecules is further illustrated in this work.
本文展示了来自大肠杆菌的两种周质受体蛋白作为生物传感器传感元件的潜在应用,该生物传感器采用表面等离子体共振(SPR)技术。这些分子,即亮氨酸特异性受体的天冬氨酸到半胱氨酸突变体(LS-D1C)和D-葡萄糖/D-半乳糖受体(GGR-Q26C)蛋白的谷氨酰胺到半胱氨酸突变体,在中性K2HPO4缓冲液中化学吸附在薄(约40nm)金膜上。通过角度和时间分辨SPR测量;我们表明两种蛋白质的吸附行为均由无扩散二级朗缪尔动力学主导。我们还表明,蛋白质修饰的金膜在与各自的靶配体结合时表现出可测量的SPR位移。根据这些SPR数据,LS-D1C和GGR-Q26C的配体结合动力学均受不可逆一级扩散限制朗缪尔模型支配。这项工作进一步说明了SPR技术在研究生物分子反应中的实用性。