Dringenberg Hans C, Yahia Nermeen, Cirasuolo Joseph, McKee Darren, Kuo Min-Ching
Department of Psychology, Queen's University, K7L 3N6, Kingston, Ontario, Canada.
Exp Brain Res. 2004 Feb;154(4):461-9. doi: 10.1007/s00221-003-1675-2. Epub 2003 Nov 12.
Classic experiments suggested that the midbrain reticular formation plays an important role in the induction and maintenance of high-frequency, low-amplitude activation of the electrocorticogram (ECoG). However, recent studies have shown that generalized activating systems are not restricted to the reticular formation in that non-reticular brain systems (e.g., basal forebrain, amygdala, superior colliculus) can effectively produce ECoG activation. Here, we investigated the role of the inferior colliculus (IC) in regulating ECoG activation in rats. Urethane-anesthetized rats displayed continuous large amplitude ECoG activity with peak power in the delta frequency range (0.5-3.9 Hz). Electrical 100-Hz stimulation (0.1-0.5 mA) of 40/88 (46%) stimulation sites in the IC suppressed low frequency oscillations and induced ECoG activation (>/=50% suppression of peak delta power). Systematic mapping of different IC territories (central nucleus, external and dorsal cortex) revealed that stimulation of all IC parts was equally effective in producing activation. Chemical stimulation of the IC with intra-collicular glutamate infusions (50 mM, 0.5 micro l) produces similar, but more consistent effects, with ECoG activation elicited in eight of nine rats. Pharmacological experiments were carried out in order to identify transmitters that mediate cortical activation in response to IC stimulation. The muscarinic receptor antagonist scopolamine (1 mg/kg, i.p.) reduced, but did not abolish, activation, as did the serotonergic receptor antagonist methiothepin (1 mg/kg, i.p.). A combination of the two drugs produced a complete block of IC-induced ECoG activation. These experiments demonstrate that the IC contains a distributed network, spanning all IC territories, which can participate in regulating the generalized activation state of the rat neocortex. Rather than by some direct cortical projections, IC neurons appear to induce ECoG activation by acting through both cholinergic and serotonergic systems, thought to provide the final effector mechanisms for cortical activation.
经典实验表明,中脑网状结构在脑电图(ECoG)高频、低幅激活的诱导和维持中起重要作用。然而,最近的研究表明,广义激活系统并不局限于网状结构,因为非网状脑系统(如基底前脑、杏仁核、上丘)也能有效产生ECoG激活。在此,我们研究了下丘(IC)在调节大鼠ECoG激活中的作用。用乌拉坦麻醉的大鼠表现出持续的大幅ECoG活动,峰值功率在δ频率范围(0.5 - 3.9 Hz)。对IC中40/88(46%)的刺激部位进行100 Hz电刺激(0.1 - 0.5 mA)可抑制低频振荡并诱导ECoG激活(峰值δ功率抑制≥50%)。对IC不同区域(中央核、外侧和背侧皮质)的系统定位显示,刺激IC的所有部分在产生激活方面同样有效。用50 mM、0.5 μl的谷氨酸在IC内进行化学刺激产生了类似但更一致的效果,9只大鼠中有8只引发了ECoG激活。为了确定介导对IC刺激产生皮质激活反应的递质,进行了药理学实验。毒蕈碱受体拮抗剂东莨菪碱(1 mg/kg,腹腔注射)可降低但并未消除激活,血清素能受体拮抗剂甲硫噻平(1 mg/kg,腹腔注射)也有同样效果。两种药物联合使用可完全阻断IC诱导的ECoG激活。这些实验表明,IC包含一个分布于所有IC区域的网络,该网络可参与调节大鼠新皮质的广义激活状态。IC神经元似乎并非通过某些直接的皮质投射,而是通过胆碱能和血清素能系统起作用来诱导ECoG激活,而这两个系统被认为是皮质激活的最终效应机制。