Van den Ende Wim, De Coninck Barbara, Clerens Stefan, Vergauwen Rudy, Van Laere André
Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology, K.U. Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium.
Plant J. 2003 Dec;36(5):697-710. doi: 10.1046/j.1365-313x.2003.01912.x.
About 15% of flowering plant species synthesize fructans. Fructans serve mainly as reserve carbohydrates and are subject to breakdown by plant fructan exohydrolases (FEHs), among which 1-FEHs (inulinases) and 6-FEHs (levanases) can be differentiated. This paper describes the unexpected finding that 6-FEHs also occur in plants that do not synthesize fructans. The purification, characterization, cloning and functional analysis of sugar beet (Beta vulgaris L.) 6-FEH are described. Enzyme activity measurements during sugar beet development suggest a constitutive expression of the gene in sugar beet roots. Classical enzyme purification followed by in-gel trypsin digestion and mass spectrometry (quadruple-time-of-flight mass spectrometry (Q-TOF) MS) led to peptide sequence information used in subsequent RT-PCR based cloning. Levan-type fructans (beta-2,6) are the best substrates for the enzyme, while inulin-type fructans (beta-2,1) and sucrose are poorly or not degraded. Sugar beet 6-FEH is more related to cell wall invertases than to vacuolar invertases and has a low iso-electric point (pI), clearly different from typical high pI cell wall invertases. Poor sequence homology to bacterial or fungal FEHs makes an endophytic origin highly unlikely. The functionality of the 6-FEH cDNA was further demonstrated by heterologous expression in Pichia pastoris. As fructans are absent in sugar beet, the role of 6-FEH in planta is not obvious. Like chitinases and beta-glucanases hydrolysing cell-surface components of fungal plant pathogens, a straightforward working hypothesis for further research might be that plant 6-FEHs participate in hydrolysis (or prevent the formation) of levan-containing slime surrounding endophytic or phytopathogenic bacteria.
约15%的开花植物物种能合成果聚糖。果聚糖主要作为储备碳水化合物,并会被植物果聚糖外切水解酶(FEHs)分解,其中1-FEHs(菊粉酶)和6-FEHs(左聚糖酶)可加以区分。本文描述了一个意外发现,即6-FEHs也存在于不合成果聚糖的植物中。文中介绍了甜菜(Beta vulgaris L.)6-FEH的纯化、特性鉴定、克隆及功能分析。甜菜发育过程中的酶活性测定表明该基因在甜菜根中组成型表达。通过经典的酶纯化方法,随后进行胶内胰蛋白酶消化和质谱分析(四极杆飞行时间质谱(Q-TOF)MS),得到了用于后续基于RT-PCR克隆的肽序列信息。左聚糖型果聚糖(β-2,6)是该酶的最佳底物,而菊粉型果聚糖(β-2,1)和蔗糖则很少被降解或不被降解。甜菜6-FEH与细胞壁转化酶的关系比与液泡转化酶的关系更为密切,且具有低等电点(pI),这与典型的高等电点细胞壁转化酶明显不同。与细菌或真菌FEHs的序列同源性较差,使得其内生起源的可能性极小。6-FEH cDNA的功能通过在毕赤酵母中的异源表达得到进一步证明。由于甜菜中不存在果聚糖,6-FEH在植物中的作用并不明显。就像几丁质酶和β-葡聚糖酶水解真菌植物病原体的细胞表面成分一样,进一步研究的一个直接可行假设可能是植物6-FEHs参与水解(或阻止形成)内生细菌或植物致病细菌周围含左聚糖的黏液。