Le Roy Katrien, Lammens Willem, Verhaest Maureen, De Coninck Barbara, Rabijns Anja, Van Laere André, Van den Ende Wim
Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology , Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
Plant Physiol. 2007 Nov;145(3):616-25. doi: 10.1104/pp.107.105049. Epub 2007 Sep 14.
Plant cell wall invertases and fructan exohydrolases (FEHs) are very closely related enzymes at the molecular and structural level (family 32 of glycoside hydrolases), but they are functionally different and are believed to fulfill distinct roles in plants. Invertases preferentially hydrolyze the glucose (Glc)-fructose (Fru) linkage in sucrose (Suc), whereas plant FEHs have no invertase activity and only split terminal Fru-Fru linkages in fructans. Recently, the three-dimensional structures of Arabidopsis (Arabidopsis thaliana) cell wall Invertase1 (AtcwINV1) and chicory (Cichorium intybus) 1-FEH IIa were resolved. Until now, it remained unknown which amino acid residues determine whether Suc or fructan is used as a donor substrate in the hydrolysis reaction of the glycosidic bond. In this article, we present site-directed mutagenesis-based data on AtcwINV1 showing that the aspartate (Asp)-239 residue fulfills an important role in both binding and hydrolysis of Suc. Moreover, it was found that the presence of a hydrophobic zone at the rim of the active site is important for optimal and stable binding of Suc. Surprisingly, a D239A mutant acted as a 1-FEH, preferentially degrading 1-kestose, indicating that plant FEHs lacking invertase activity could have evolved from a cell wall invertase-type ancestor by a few mutational changes. In general, family 32 and 68 enzymes containing an Asp-239 functional homolog have Suc as a preferential substrate, whereas enzymes lacking this homolog use fructans as a donor substrate. The presence or absence of such an Asp-239 homolog is proposed as a reliable determinant to discriminate between real invertases and defective invertases/FEHs.
植物细胞壁转化酶和果聚糖外切水解酶(FEHs)在分子和结构水平上是非常密切相关的酶(糖苷水解酶家族32),但它们在功能上有所不同,并且被认为在植物中发挥着不同的作用。转化酶优先水解蔗糖(Suc)中的葡萄糖(Glc)-果糖(Fru)键,而植物FEHs没有转化酶活性,只分解果聚糖中的末端Fru-Fru键。最近,拟南芥(Arabidopsis thaliana)细胞壁转化酶1(AtcwINV1)和菊苣(Cichorium intybus)1-FEH IIa的三维结构得到了解析。到目前为止,尚不清楚哪些氨基酸残基决定在糖苷键水解反应中蔗糖还是果聚糖被用作供体底物。在本文中,我们展示了基于定点诱变的AtcwINV1数据,表明天冬氨酸(Asp)-239残基在蔗糖的结合和水解中都起着重要作用。此外,还发现活性位点边缘存在疏水区域对于蔗糖的最佳和稳定结合很重要。令人惊讶的是,D239A突变体表现为1-FEH,优先降解1-蔗果三糖,这表明缺乏转化酶活性的植物FEHs可能是通过一些突变变化从细胞壁转化酶类型的祖先进化而来的。一般来说,含有Asp-239功能同源物的家族32和68酶以蔗糖作为优先底物,而缺乏这种同源物的酶则使用果聚糖作为供体底物。有人提出这种Asp-239同源物的存在与否是区分真正的转化酶和有缺陷的转化酶/FEHs的可靠决定因素。