Mudra Regina, Douglas Rodney J
Institute of Neuroinformatics, University/ETH Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
Neural Netw. 2003 Nov;16(9):1373-88. doi: 10.1016/j.neunet.2003.08.004.
Classical Computer Science approaches to navigation by autonomous robots continue to make good progress. However, we have only a limited understanding of how navigation is implemented in the neural networks of animals, which still perform very much better in navigational tasks than robots. In this paper we explore the implementation of neural network based navigation in a simple robot. We use a modular navigation system that contains separate representations of visual input and the path integration process. These representations are combined to influence the behavior of a robot. Both representations are encoded within recurrent neuronal networks. The outputs of the representations are vectors of polar values that encode the location of the nearest object, or of a specific place in the environment. The robot manoeuvres in relation to these attended locations, in the context of its egocentric spatial map. During ego-motion towards a goal, the network representation of the goal moves in a counter-movement due to applied motor feedback. The robot's position is continuously compared against its visual input, and mismatches between the visually perceived goal position and its spatial representation are corrected.
传统计算机科学中自主机器人导航的方法仍在不断取得良好进展。然而,我们对于动物神经网络中导航是如何实现的了解有限,而动物在导航任务中的表现仍远优于机器人。在本文中,我们探索了基于神经网络的导航在一个简单机器人中的实现。我们使用了一个模块化导航系统,该系统包含视觉输入和路径积分过程的单独表示。这些表示被组合起来以影响机器人的行为。两种表示都编码在循环神经网络中。表示的输出是极坐标值向量,用于编码最近物体的位置或环境中特定地点的位置。机器人在其以自我为中心的空间地图的背景下,相对于这些关注的位置进行机动。在朝着目标进行自我运动期间,由于应用的运动反馈,目标的网络表示会反向移动。机器人的位置会不断与其视觉输入进行比较,并且视觉感知到的目标位置与其空间表示之间的不匹配会得到纠正。