Byrne Patrick, Becker Suzanna
Department of Psychology, McMaster University, Hamilton, Ontario, Canada.
Neural Comput. 2004 Sep;16(9):1851-72. doi: 10.1162/0899766041336468.
Various lines of evidence indicate that animals process spatial information regarding object locations differently from spatial information regarding environmental boundaries or landmarks. Following Wang and Spelke's (2002) observation that spatial updating of egocentric representations appears to lie at the heart of many navigational tasks in many species, including humans, we postulate a neural circuit that can support this computation in parietal cortex, assuming that egocentric representations of multiple objects can be maintained in prefrontal cortex in spatial working memory (not simulated here). Our method is a generalization of an earlier model by Droulez and Berthoz (1991), with extensions to support observer rotation. We can thereby simulate perspective transformation of working memory representations of object coordinates based on an egomotion signal presumed to be generated via mental navigation. This biologically plausible transformation would allow a subject to recall the locations of previously viewed objects from novel viewpoints reached via imagined, discontinuous, or disoriented displacement. Finally, we discuss how this model can account for a wide range of experimental findings regarding memory for object locations, and we present several predictions made by the model.
各种证据表明,动物处理有关物体位置的空间信息与处理有关环境边界或地标的空间信息的方式不同。继Wang和Spelke(2002年)观察到自我中心表征的空间更新似乎是包括人类在内的许多物种的许多导航任务的核心之后,我们假设存在一个神经回路,该回路可以在顶叶皮层中支持这种计算,并假设多个物体的自我中心表征可以在空间工作记忆中在前额叶皮层中得到维持(此处未进行模拟)。我们的方法是对Droulez和Berthoz(1991年)早期模型的推广,并进行了扩展以支持观察者旋转。由此,我们可以基于假定通过心理导航产生的自我运动信号,模拟物体坐标的工作记忆表征的视角转换。这种具有生物学合理性的转换将使主体能够从通过想象、不连续或无方向位移到达的新视角回忆先前看到的物体的位置。最后,我们讨论了该模型如何解释关于物体位置记忆的广泛实验结果,并提出了该模型做出的几个预测。