Suppr超能文献

使用新型高密度反相裂解物微阵列对NCI-60癌细胞系进行蛋白质组分析。

Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays.

作者信息

Nishizuka Satoshi, Charboneau Lu, Young Lynn, Major Sylvia, Reinhold William C, Waltham Mark, Kouros-Mehr Hosein, Bussey Kimberly J, Lee Jae K, Espina Virginia, Munson Peter J, Petricoin Emanuel, Liotta Lance A, Weinstein John N

机构信息

Genomics and Bioinformatics Group, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14229-34. doi: 10.1073/pnas.2331323100. Epub 2003 Nov 17.

Abstract

Because most potential molecular markers and targets are proteins, proteomic profiling is expected to yield more direct answers to functional and pharmacological questions than does transcriptional profiling. To aid in such studies, we have developed a protocol for making reverse-phase protein lysate microarrays with larger numbers of spots than previously feasible. Our first application of these arrays was to profiling of the 60 human cancer cell lines (NCI-60) used by the National Cancer Institute to screen compounds for anticancer activity. Each glass slide microarray included 648 lysate spots representing the NCI-60 cell lines plus controls, each at 10 two-fold serial dilutions to provide a wide dynamic range. Mouse monoclonal antibodies and the catalyzed signal amplification system were used for immunoquantitation. The signal levels from the >30,000 data points for our first 52 antibodies were analyzed by using p-scan and a quantitative dose interpolation method. Clustered image maps revealed biologically interpretable patterns of protein expression. Among the principal early findings from these arrays were two promising pathological markers for distinguishing colon from ovarian adenocarcinomas. When we compared the patterns of protein expression with those we had obtained for the same genes at the mRNA level by using both cDNA and oligonucleotide arrays, a striking regularity appeared: cell-structure-related proteins almost invariably showed a high correlation between mRNA and protein levels across the NCI-60 cell lines, whereas non-cell-structure-related proteins showed poor correlation.

摘要

由于大多数潜在的分子标志物和靶点都是蛋白质,因此蛋白质组分析有望比转录组分析更直接地回答功能和药理学问题。为了辅助此类研究,我们开发了一种方案,用于制作具有比以前更多斑点数量的反相蛋白质裂解物微阵列。我们对这些阵列的首次应用是对美国国立癌症研究所用于筛选具有抗癌活性化合物的60种人类癌细胞系(NCI-60)进行分析。每个载玻片微阵列包含648个裂解物斑点,代表NCI-60细胞系加对照,每个斑点有10个两倍连续稀释度,以提供宽动态范围。使用小鼠单克隆抗体和催化信号放大系统进行免疫定量。通过使用p扫描和定量剂量插值方法分析了我们最初52种抗体的>30,000个数据点的信号水平。聚类图像图谱揭示了蛋白质表达的生物学可解释模式。这些阵列的主要早期发现之一是两种有前景的病理标志物,可用于区分结肠腺癌和卵巢腺癌。当我们将蛋白质表达模式与我们通过使用cDNA和寡核苷酸阵列在mRNA水平上对相同基因获得的模式进行比较时,出现了一个显著的规律:在NCI-60细胞系中,与细胞结构相关的蛋白质在mRNA和蛋白质水平之间几乎总是显示出高度相关性,而非细胞结构相关的蛋白质则显示出较差的相关性。

相似文献

10
Predicting cancer drug response by proteomic profiling.通过蛋白质组学分析预测癌症药物反应。
Clin Cancer Res. 2006 Aug 1;12(15):4583-9. doi: 10.1158/1078-0432.CCR-06-0290.

引用本文的文献

5
A Review of Current Methods for Repositioning Drugs and Chemical Compounds.药物和化合物重新定位的当前方法综述
Front Oncol. 2021 Jul 22;11:711225. doi: 10.3389/fonc.2021.711225. eCollection 2021.

本文引用的文献

8
Proteomic profiling of the cancer microenvironment by antibody arrays.通过抗体阵列对癌症微环境进行蛋白质组学分析。
Proteomics. 2001 Oct;1(10):1271-8. doi: 10.1002/1615-9861(200110)1:10<1271::AID-PROT1271>3.0.CO;2-6.
9
Chemosensitivity prediction by transcriptional profiling.通过转录谱预测化学敏感性
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10787-92. doi: 10.1073/pnas.191368598.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验