Suppr超能文献

具有准局部竞争的集合种群动态

Metapopulation dynamics with quasi-local competition.

作者信息

Doebeli Michael, Killingback Timothy

机构信息

Department of Mathematics, University of British Columbia, British Columbia, Vancouver, Canada.

出版信息

Theor Popul Biol. 2003 Dec;64(4):397-416. doi: 10.1016/s0040-5809(03)00106-0.

Abstract

Stepping-stone models for the ecological dynamics of metapopulations are often used to address general questions about the effects of spatial structure on the nature and complexity of population fluctuations. Such models describe an ensemble of local and spatially isolated habitat patches that are connected through dispersal. Reproduction and hence the dynamics in a given local population depend on the density of that local population, and a fraction of every local population disperses to neighboring patches. In such models, interesting dynamic phenomena, e.g. the persistence of locally unstable predator-prey interactions, are only observed if the local dynamics in an isolated patch exhibit non-equilibrium behavior. Therefore, the scope of these models is limited. Here we extend these models by making the biologically plausible assumption that reproductive success in a given local habitat not only depends on the density of the local population living in that habitat, but also on the densities of neighboring local populations. This would occur if competition for resources occurs between neighboring populations, e.g. due to foraging in neighboring habitats. With this assumption of quasi-local competition the dynamics of the model change completely. The main difference is that even if the dynamics of the local populations have a stable equilibrium in isolation, the spatially uniform equilibrium in which all local populations are at their carrying capacity becomes unstable if the strength of quasi-local competition reaches a critical level, which can be calculated analytically. In this case the metapopulation reaches a new stable state, which is, however, not spatially uniform anymore and instead results in an irregular spatial pattern of local population abundance. For large metapopulations, a huge number of different, spatially non-uniform equilibrium states coexist as attractors of the metapopulation dynamics, so that the final state of the system depends critically on the initial conditions. The existence of a large number of attractors has important consequences when environmental noise is introduced into the model. Then the metapopulation performs a random walk in the space of all attractors. This leads to large and complicated population fluctuations whose power spectrum obeys a red-shifted power law. Our theory reiterates the potential importance of spatial structure for ecological processes and proposes new mechanisms for the emergence of non-uniform spatial patterns of abundance and for the persistence of complicated temporal population fluctuations.

摘要

集合种群生态动力学的踏脚石模型常被用于解决关于空间结构对种群波动的性质和复杂性影响的一般性问题。这类模型描述了一组通过扩散相连的局部且空间隔离的栖息地斑块。繁殖以及给定局部种群的动态取决于该局部种群的密度,并且每个局部种群的一部分会扩散到相邻斑块。在这类模型中,只有当孤立斑块中的局部动态表现出非平衡行为时,才会观察到有趣的动态现象,例如局部不稳定的捕食者 - 猎物相互作用的持续存在。因此,这些模型的适用范围有限。在此,我们通过做出生物学上合理的假设来扩展这些模型,即给定局部栖息地的繁殖成功率不仅取决于生活在该栖息地的局部种群的密度,还取决于相邻局部种群的密度。如果相邻种群之间发生资源竞争,例如由于在相邻栖息地觅食,就会出现这种情况。基于这种准局部竞争的假设,模型的动态会完全改变。主要区别在于,即使局部种群的动态在孤立状态下有一个稳定平衡点,但如果准局部竞争的强度达到一个临界水平(可通过解析计算得出),那么所有局部种群都处于其承载能力的空间均匀平衡点就会变得不稳定。在这种情况下,集合种群会达到一个新 的稳定状态,然而,这个状态不再是空间均匀的,而是导致局部种群丰度出现不规则的空间格局。对于大型集合种群,大量不同的、空间不均匀的平衡态作为集合种群动态的吸引子共存,因此系统的最终状态严重依赖于初始条件。当将环境噪声引入模型时,大量吸引子的存在会产生重要影响。然后,集合种群会在所有吸引子的空间中进行随机游走。这会导致巨大且复杂的种群波动,其功率谱遵循红移幂律。我们的理论重申了空间结构对生态过程的潜在重要性,并提出了丰度不均匀空间格局出现以及复杂时间种群波动持续存在的新机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验