Iranzo Olga, Elmer Terry, Richard John P, Morrow Janet R
Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, USA.
Inorg Chem. 2003 Dec 1;42(24):7737-46. doi: 10.1021/ic030131b.
A series of ligands containing linked 1,4,7-triazacyclononane macrocycles are studied for the preparation of dinuclear Zn(II) complexes including 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (L2OH), 1,5-bis(1,4,7-triazacyclonon-1-yl)pentane (L3), 2,9-bis(1-methyl-1,4,7-triazacyclonon-1-yl)-1,10-phenanthroline (L4), and alpha,alpha'-bis(1,4,7-triazacyclonon-1-yl)-m-xylene (L5). The titration of these ligands with Zn(NO(3))(2) was monitored by (1)H NMR. Each ligand was found to bind two Zn(II) ions with a very high affinity at near neutral pH under conditions of millimolar ligand and 2 equiv of Zn(NO(3))(2). In contrast, a stable mononuclear complex was formed in solutions containing 5.0 mM L2OH and 1 equiv of Zn(NO(3))(2). (1)H and (13)C NMR spectral data are consistent with formation of a highly symmetric mononuclear complex Zn(L2OH) in which a Zn(II) ion is sandwiched between two triazacyclononane units. The second-order rate constant k(Zn) for the cleavage of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP) at pH 7.6 and 25 degrees C catalyzed by Zn(2)(L2O) is 120-fold larger than that for the reaction catalyzed by the closely related mononuclear complex Zn(L1) (L1 = 1,4,7-triazacyclononane). By comparison, the observation that the values of k(Zn) determined under similar reaction conditions for cleavage of HPNP catalyzed by the other Zn(II) dinuclear complexes are only 3-5-fold larger than values of k(Zn) for catalysis by Zn(L1) provides strong evidence that the two Zn(II) cations in Zn(2)(L2O) act cooperatively in the stabilization of the transition state for cleavage of HPNP. The extent of cleavage of an oligoribonucleotide by Zn(L1), Zn(2)(L5), and Zn(2)(L2O) at pH 7.5 and 37 degrees C after 24 h incubation is 4,10, and 90%. The rationale for the observed differences in catalytic activity of these dinuclear Zn(II) complexes is discussed in terms of the mechanism of RNA cleavage and the structure and speciation of these complexes in solution.
研究了一系列含有相连的1,4,7-三氮杂环壬烷大环的配体用于制备双核锌(II)配合物,包括1,3-双(1,4,7-三氮杂环壬-1-基)-2-羟基丙烷(L2OH)、1,5-双(1,4,7-三氮杂环壬-1-基)戊烷(L3)、2,9-双(1-甲基-1,4,7-三氮杂环壬-1-基)-1,10-菲咯啉(L4)和α,α'-双(1,4,7-三氮杂环壬-1-基)-间二甲苯(L5)。通过1H NMR监测这些配体与Zn(NO3)2的滴定。发现在毫摩尔级配体和2当量Zn(NO3)2的条件下,每个配体在接近中性pH时以非常高的亲和力结合两个锌(II)离子。相比之下,在含有5.0 mM L2OH和1当量Zn(NO3)2的溶液中形成了稳定的单核配合物。1H和13C NMR光谱数据与形成高度对称的单核配合物Zn(L2OH)一致,其中一个锌(II)离子夹在两个三氮杂环壬烷单元之间。在pH 7.6和25℃下,由Zn2(L2O)催化的2-羟丙基-4-硝基苯基磷酸酯(HPNP)裂解的二级速率常数k(Zn)比由密切相关的单核配合物Zn(L1)(L1 = 1,4,7-三氮杂环壬烷)催化的反应大120倍。相比之下,在类似反应条件下测定的由其他锌(II)双核配合物催化的HPNP裂解的k(Zn)值仅比由Zn(L1)催化的值大3-5倍,这一观察结果提供了有力证据,表明Zn2(L2O)中的两个锌(II)阳离子在稳定HPNP裂解的过渡态方面协同作用。在pH 7.5和37℃下孵育24小时后,Zn(L1)、Zn2(L5)和Zn2(L2O)对寡核糖核苷酸的裂解程度分别为4%、10%和90%。根据RNA裂解机制以及这些配合物在溶液中的结构和形态,讨论了这些双核锌(II)配合物催化活性差异的原理。