Suppr超能文献

一种用于优化多模式放射免疫疗法和化疗剂量方案的体外模型:p53表达的影响

An in vitro model to optimize dose scheduling of multimodal radioimmunotherapy and chemotherapy: effects of p53 expression.

作者信息

Blumenthal Rosalyn D, Leone Evelyn, Goldenberg David M, Rodriguez Marisol, Modrak David

机构信息

Garden State Cancer Center, Belleville, NJ 07109, USA.

出版信息

Int J Cancer. 2004 Jan 10;108(2):293-300. doi: 10.1002/ijc.11534.

Abstract

Several reports have appeared on the use of combined radioimmunotherapy (RAIT) and chemotherapy. The choice of drug to use with RAIT and how to space the two treatments has not been completely addressed. Because every patient's cancer presents with a specific molecular phenotype, we hypothesized that it may be necessary to tailor therapy based on specific gene expression. We addressed how the form of expression of a single gene, the p53 tumor suppressor, would impact the choice of agents, as well as sequence and spacing of agents. p53 regulates cell cycle arrest to allow for DNA repair after therapy-induced small DNA damage or induction of apoptosis if damage is great and has been shown to affect chemo- and radiosensitivity of cancer cells. We established 3 stable p53 transfectants of the SKOV-3 p53null parental line (p53(wt), p53(143mut) or p53(273mut)). p53 expression was confirmed using flow cytometry, using the DO1 pan-p53 Ab and the PAb240 anti-p53mut Ab. The colorimetric MTT assay was then used to measure dose-dependent growth inhibition from single modality chemotherapy (doxorubicin, carboplatin, paclitaxel or topotecan) or radioimmunotherapy (90Y-RS-7 IgG anti-EGP1). The % survival vs. log [drug] were plotted to obtain the IC50. We then used a matrix design in which we varied the sequence of the first and second modality of treatment and the spacing between the 2 treatments to determine the most synergistic and antagonistic combinations for the parental SKOV-3 and each of the 3 transfectants. The IC50 for each therapeutic agent varied as a function of the form of p53 expressed. For example, of the 4 lines, the p53wt transfectant was the most resistant to topotecan and the 143mut was the most resistant to carboplatin. The 273mut was quite sensitive to both doxorubicin and paclitaxel, whereas the p53null and wt were not. For multimodal treatments, most combinations of RAIT and chemotherapy resulted in a 30-40% growth inhibition (GI) and were either additive or moderately antagonistic. The 3 best (>60% GI) and 3 worst (<25% GI) combinations were identified and were unique to the parental p53null and to the 3 transfectants. Certain combinations showed clear synergy and others were antagonistic, with the first treatment modality blocking the growth inhibitory effects of the second treatment modality. The form of p53 expressed affects chemosensitivity and radiosensitivity and will influence optimal multimodal therapy with RAIT and chemotherapy and the dose-schedule (sequential with RAIT first or with drug first) when more than 1 agent is used.

摘要

已有多篇关于联合放射免疫疗法(RAIT)与化疗的报道。与RAIT联合使用的药物选择以及两种治疗的间隔安排尚未得到充分探讨。由于每位患者的癌症都呈现出特定的分子表型,我们推测可能有必要根据特定的基因表达来定制治疗方案。我们研究了单个基因p53肿瘤抑制因子的表达形式如何影响药物选择以及药物的顺序和间隔。p53调节细胞周期停滞,以便在治疗诱导的小DNA损伤后进行DNA修复,或者在损伤严重时诱导细胞凋亡,并且已证明其会影响癌细胞的化疗敏感性和放射敏感性。我们构建了SKOV - 3 p53缺失亲代细胞系的3种稳定p53转染细胞株(p53(wt)、p53(143mut)或p53(273mut))。使用DO1全p53抗体和PAb240抗p53突变抗体,通过流式细胞术确认p53表达。然后使用比色MTT法测量单药化疗(阿霉素、卡铂、紫杉醇或拓扑替康)或放射免疫疗法(90Y - RS - 7 IgG抗EGP1)的剂量依赖性生长抑制。绘制存活百分比与对数[药物]的关系图以获得IC50。然后我们采用一种矩阵设计,改变第一种和第二种治疗方式的顺序以及两种治疗之间的间隔,以确定亲代SKOV - 3细胞和3种转染细胞株中最具协同作用和拮抗作用的组合。每种治疗药物的IC50随所表达的p53形式而变化。例如,在这4种细胞株中,p53wt转染细胞株对拓扑替康最耐药,143mut对卡铂最耐药。273mut对阿霉素和紫杉醇都相当敏感,而p53缺失细胞株和wt细胞株则不然。对于多模式治疗,RAIT与化疗的大多数组合导致30 - 40%的生长抑制(GI),且要么是相加作用,要么是中度拮抗作用。确定了3种最佳(>60% GI)和3种最差(<25% GI)组合,这些组合对于亲代p53缺失细胞株和3种转染细胞株是独特的。某些组合显示出明显的协同作用,而其他组合则是拮抗作用,第一种治疗方式会阻断第二种治疗方式的生长抑制作用。所表达的p53形式会影响化疗敏感性和放射敏感性,并将影响RAIT与化疗的最佳多模式治疗以及使用多种药物时的剂量方案(先进行RAIT还是先使用药物)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验