Suppr超能文献

一氧化氮增强酚类化合物对大肠杆菌的细胞毒性:抗氧化防御的影响。

Nitric oxide promotes strong cytotoxicity of phenolic compounds against Escherichia coli: the influence of antioxidant defenses.

作者信息

Urios Amparo, López-Gresa M Pilar, González M Carmen, Primo Jaime, Martínez Alicia, Herrera Guadalupe, Escudero Juan C, O'Connor José-Enrique, Blanco Manuel

机构信息

FVIB Instituto de Investigaciones Citológicas, Valencia, Spain.

出版信息

Free Radic Biol Med. 2003 Dec 1;35(11):1373-81. doi: 10.1016/j.freeradbiomed.2003.08.007.

Abstract

The induction of mutagenic and cytotoxic effects by simple phenolics, including catechol (CAT), 3,4-dihydroxyphenylacetic acid (DOPAC), hydroquinone (HQ), and 2,5-dihydroxyphenylacetic (homogentisic) acid (HGA), appears to occur through an oxidative mechanism based on the ability of these compounds to undergo autoxidation, leading to quinone formation with the production of reactive oxygen species. This is supported by the detection of such adverse effects in plate assays using Escherichia coli tester strains deficient in the OxyR function, but not in OxyR(+) strains. The OxyR protein is a redox-sensitive regulator of genes encoding antioxidant enzymes including catalase and alkyl hydroperoxide reductase, which would eliminate hydrogen peroxide. Methyl-substituted phenolics such as 4-methylcatechol (MCAT) and methylhydroquinone (MHQ) produced, in addition to oxidative toxicity, marked cytotoxic effects against OxyR(+) cells, thus revealing a mechanism of toxicity not mediated by hydrogen peroxide that could involve quinones and quinone methides arising from MCAT and MHQ oxidation. Quinone compounds could also be responsible for the enhanced cytotoxicity of certain phenolics when combined with a nitric oxide (NO()) donor such as diethylamine/NO (DEA/NO). Phenolics scavenge NO() and, in turn, NO() oxidizes phenolics to form their quinone derivatives. In OxyR(+) cells, where the oxidative toxicity is inhibited, DEA/NO promoted exceptional increases in the cytotoxicity of CAT and 3,4-dihydroxycinnamic (caffeic) acid (CAF), which both exhibited very low oxidative cytotoxicity, as well as in that of MCAT, HQ, and MHQ. In contrast, DEA/NO failed to promote toxicity by DOPAC and HGA, probably due to their ability to undergo oxidative polymerization, leading to the formation of melanins. Spectroscopic studies demonstrated quinone generation from the oxidation of CAF, HQ, and MHQ by DEA/NO. The o-quinone derived from CAF was rather unstable and decomposed during its isolation. For the generation of toxic quinones, e.g., to be used as therapeutic agents producing antitumor or antibacterial effects, the isolation step could be avoided with the method proposed. It combines quinone precursors, i.e. phenolic compounds, with an oxidant such as NO().

摘要

包括儿茶酚(CAT)、3,4-二羟基苯乙酸(DOPAC)、对苯二酚(HQ)和2,5-二羟基苯乙酸(尿黑酸)(HGA)在内的简单酚类物质诱导诱变和细胞毒性效应,似乎是通过一种氧化机制发生的,这基于这些化合物进行自氧化的能力,导致醌的形成并产生活性氧物种。在使用缺乏OxyR功能的大肠杆菌测试菌株的平板试验中检测到了此类不良反应,但在OxyR(+)菌株中未检测到,这支持了上述观点。OxyR蛋白是一种对氧化还原敏感的调节因子,可调节编码抗氧化酶(包括过氧化氢酶和烷基过氧化氢还原酶)的基因,这些抗氧化酶可消除过氧化氢。甲基取代的酚类物质,如4-甲基儿茶酚(MCAT)和甲基对苯二酚(MHQ),除了具有氧化毒性外,还对OxyR(+)细胞产生显著的细胞毒性作用,从而揭示了一种不由过氧化氢介导的毒性机制,该机制可能涉及MCAT和MHQ氧化产生的醌和醌甲基化物。醌类化合物也可能是某些酚类物质与一氧化氮(NO())供体(如二乙胺/NO(DEA/NO))联合使用时细胞毒性增强的原因。酚类物质可清除NO(),反过来,NO()将酚类物质氧化形成其醌衍生物。在OxyR(+)细胞中,氧化毒性受到抑制,DEA/NO促使CAT和3,4-二羟基肉桂酸(咖啡酸)(CAF)的细胞毒性异常增加,这两种物质的氧化细胞毒性都非常低,MCAT、HQ和MHQ的细胞毒性也增加。相比之下,DEA/NO未能促进DOPAC和HGA的毒性,可能是因为它们能够进行氧化聚合,导致黑色素的形成。光谱研究表明,DEA/NO可使CAF(咖啡酸)、HQ和MHQ氧化生成醌。CAF衍生的邻醌相当不稳定,在分离过程中会分解。对于生成有毒醌类物质(例如用作产生抗肿瘤或抗菌作用的治疗剂),所提出的方法可以避免分离步骤。该方法将醌前体(即酚类化合物)与氧化剂(如NO())结合使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验