Andreassen Paul R, Lohez Olivier D, Margolis Robert L
Institut de Biologie Structurale J-P Ebel, CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
Mutat Res. 2003 Nov 27;532(1-2):245-53. doi: 10.1016/j.mrfmmm.2003.08.020.
While checkpoints that act in S-phase are essential to the maintenance of genomic stability, these checkpoints do not act alone. Additionally, G2 DNA damage checkpoints, the spindle assembly checkpoint, and a post-mitotic G1 tetraploidy checkpoint act subsequent to DNA replication to ensure genetic fidelity in cell division. In this review, we will examine how these checkpoints cooperate in the maintenance of genomic stability in response to either DNA damage or cytoskeletal disruption. Since the G2 and spindle assembly checkpoints are subject to adaptation, we will discuss how the G1 tetraploidy checkpoint acts in concert with these checkpoints to mediate stable arrest. We will also probe the relationship of these checkpoints by exploring common features of their regulation. Finally, the consequences of malfunction of these checkpoints for both intrinsic and chemically induced genomic instability will be examined. Among these consequences are aneuploidization, extranumerary centrosomes, and micronucleation.
虽然在S期起作用的关卡对于维持基因组稳定性至关重要,但这些关卡并非单独发挥作用。此外,G2期DNA损伤关卡、纺锤体组装关卡以及有丝分裂后G1期四倍体关卡在DNA复制之后发挥作用,以确保细胞分裂过程中的遗传保真度。在本综述中,我们将研究这些关卡如何协同作用以响应DNA损伤或细胞骨架破坏来维持基因组稳定性。由于G2期和纺锤体组装关卡会发生适应性变化,我们将讨论G1期四倍体关卡如何与这些关卡协同作用以介导稳定的细胞停滞。我们还将通过探索它们调控的共同特征来探究这些关卡之间的关系。最后,将研究这些关卡功能异常对内在和化学诱导的基因组不稳定性的影响。这些影响包括非整倍体化、多余中心体和微核形成。