Cui Tai-Gen, Foster Rebecca R, Saleem Moin, Mathieson Peter W, Gillatt David A, Bates David O, Harper Steven J
Microvascula Research Laboratories, Dept. of Physiology, Preclinical Veterinary School, Univ. of Bristol, Southwell St., Bristol BS2 8EJ, UK.
Am J Physiol Renal Physiol. 2004 Apr;286(4):F767-73. doi: 10.1152/ajprenal.00337.2003. Epub 2003 Nov 25.
Despite production by podocytes of the proangiogenic molecule vascular endothelial growth factor-A (VEGF), the glomeruli are not sites of angiogenesis. We recently described mRNA expression of an inhibitory splice variant of VEGF (VEGF165b) in normal kidney (Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D, and Harper SJ. Cancer Res 62: 4123-4131, 2002). Available anti-VEGF antibodies do not distinguish stimulatory from inhibitory VEGF families. To assess the production of VEGF165 (stimulatory) and VEGF165b (inhibitory) isoforms by human podocytes, we examined both primary cultured and conditionally immortalized human podocytes using family- and isoform-specific RT-PCR. In addition, VEGF protein production was analyzed in podocytes, using isoform-specific double-strand small-interference RNAs (siRNA). RT-PCR demonstrated the production of VEGF189 mRNA by podocytes of both phenotypes. In contrast, on differentiation there was a splicing change from VEGF165 to VEGF165b mRNA. In addition, VEGF protein in the supernatant of conditionally immortalized, differentiated podocytes was reduced by VEGF165b siRNA to 20+/-11% of the level of mock-transfected cells (P < 0.01). No reduction was seen with mismatch siRNA. Moreover, there was no reduction in VEGF protein concentration in the supernatant of primary cultured, dedifferentiated human podocytes (109+/-8% of mismatch siRNA, P > 0.1). In conclusion, differentiated but not dedifferentiated human podocytes secrete significant amounts of VEGF165b protein. It is possible that this may explain the paradox of high VEGF production in the glomerulus but no angiogenesis. Furthermore, the existence of this splicing switch in relation to podocyte phenotype suggests that alternative splicing of the VEGF pre-RNA is a regulated process that is open to manipulation and therefore could be a target for novel cancer therapies.
尽管足细胞能产生促血管生成分子血管内皮生长因子-A(VEGF),但肾小球并非血管生成的部位。我们最近描述了正常肾脏中VEGF抑制性剪接变体(VEGF165b)的mRNA表达(Bates DO、Cui TG、Doughty JM、Winkler M、Sugiono M、Shields JD、Peat D、Gillatt D和Harper SJ。Cancer Res 62: 4123 - 4131, 2002)。现有的抗VEGF抗体无法区分刺激性和抑制性VEGF家族。为了评估人足细胞产生VEGF165(刺激性)和VEGF165b(抑制性)异构体的情况,我们使用家族特异性和异构体特异性逆转录聚合酶链反应(RT-PCR)检测了原代培养的和条件永生化的人足细胞。此外,利用异构体特异性双链小干扰RNA(siRNA)分析了足细胞中VEGF蛋白的产生情况。RT-PCR显示两种表型的足细胞均产生VEGF189 mRNA。相反,在分化过程中,出现了从VEGF165 mRNA到VEGF165b mRNA的剪接变化。此外,VEGF165b siRNA将条件永生化、分化的足细胞上清液中的VEGF蛋白降低至模拟转染细胞水平的20±11%(P < 0.01)。错配siRNA未见降低作用。此外,原代培养、去分化的人足细胞上清液中的VEGF蛋白浓度未降低(为错配siRNA的109±8%,P > 0.1)。总之,分化的而非去分化的人足细胞分泌大量的VEGF165b蛋白。这有可能解释肾小球中VEGF产生量高但无血管生成这一矛盾现象。此外,这种与足细胞表型相关的剪接开关的存在表明,VEGF前体RNA的可变剪接是一个受调控的过程,易于操控,因此可能成为新型癌症治疗的靶点。